* solvers -> solver
* adaptive_functions -> adaptive_function
* callbacks -> callback
* operators -> operator
* pinns -> physics_informed_solver
* layers -> block
This commit is contained in:
Dario Coscia
2025-02-19 11:35:43 +01:00
committed by Nicola Demo
parent 810d215ca0
commit df673cad4e
90 changed files with 155 additions and 151 deletions

View File

@@ -0,0 +1,65 @@
"""PINA Callbacks Implementations"""
from lightning.pytorch.callbacks import Callback
import torch
from ..utils import check_consistency
from pina.optim import TorchOptimizer
class SwitchOptimizer(Callback):
def __init__(self, new_optimizers, epoch_switch):
"""
PINA Implementation of a Lightning Callback to switch optimizer during
training.
This callback allows for switching between different optimizers during
training, enabling the exploration of multiple optimization strategies
without the need to stop training.
:param new_optimizers: The model optimizers to switch to. Can be a
single :class:`torch.optim.Optimizer` or a list of them for multiple
model solver.
:type new_optimizers: pina.optim.TorchOptimizer | list
:param epoch_switch: The epoch at which to switch to the new optimizer.
:type epoch_switch: int
Example:
>>> switch_callback = SwitchOptimizer(new_optimizers=optimizer,
>>> epoch_switch=10)
"""
super().__init__()
if epoch_switch < 1:
raise ValueError("epoch_switch must be greater than one.")
if not isinstance(new_optimizers, list):
new_optimizers = [new_optimizers]
# check type consistency
for optimizer in new_optimizers:
check_consistency(optimizer, TorchOptimizer)
check_consistency(epoch_switch, int)
# save new optimizers
self._new_optimizers = new_optimizers
self._epoch_switch = epoch_switch
def on_train_epoch_start(self, trainer, __):
"""
Callback function to switch optimizer at the start of each training epoch.
:param trainer: The trainer object managing the training process.
:type trainer: pytorch_lightning.Trainer
:param _: Placeholder argument (not used).
:return: None
:rtype: None
"""
if trainer.current_epoch == self._epoch_switch:
optims = []
for idx, optim in enumerate(self._new_optimizers):
optim.hook(trainer.solver.models[idx].parameters())
optims.append(optim.instance)
trainer.optimizers = optims