Renaming
* solvers -> solver * adaptive_functions -> adaptive_function * callbacks -> callback * operators -> operator * pinns -> physics_informed_solver * layers -> block
This commit is contained in:
committed by
Nicola Demo
parent
810d215ca0
commit
df673cad4e
@@ -2,9 +2,9 @@
|
||||
|
||||
import torch
|
||||
from torch import nn, cat
|
||||
from .layers import AVNOBlock
|
||||
from .block import AVNOBlock
|
||||
from .base_no import KernelNeuralOperator
|
||||
from pina.utils import check_consistency
|
||||
from ..utils import check_consistency
|
||||
|
||||
|
||||
class AveragingNeuralOperator(KernelNeuralOperator):
|
||||
|
||||
@@ -3,14 +3,14 @@ Kernel Neural Operator Module.
|
||||
"""
|
||||
|
||||
import torch
|
||||
from pina.utils import check_consistency
|
||||
from ..utils import check_consistency
|
||||
|
||||
|
||||
class KernelNeuralOperator(torch.nn.Module):
|
||||
r"""
|
||||
Base class for composing Neural Operators with integral kernels.
|
||||
|
||||
This is a base class for composing neural operators with multiple
|
||||
This is a base class for composing neural operator with multiple
|
||||
integral kernels. All neural operator models defined in PINA inherit
|
||||
from this class. The structure is inspired by the work of Kovachki, N.
|
||||
et al. see Figure 2 of the reference for extra details. The Neural
|
||||
|
||||
35
pina/model/block/__init__.py
Normal file
35
pina/model/block/__init__.py
Normal file
@@ -0,0 +1,35 @@
|
||||
__all__ = [
|
||||
"ContinuousConvBlock",
|
||||
"ResidualBlock",
|
||||
"EnhancedLinear",
|
||||
"SpectralConvBlock1D",
|
||||
"SpectralConvBlock2D",
|
||||
"SpectralConvBlock3D",
|
||||
"FourierBlock1D",
|
||||
"FourierBlock2D",
|
||||
"FourierBlock3D",
|
||||
"PODBlock",
|
||||
"OrthogonalBlock",
|
||||
"PeriodicBoundaryEmbedding",
|
||||
"FourierFeatureEmbedding",
|
||||
"AVNOBlock",
|
||||
"LowRankBlock",
|
||||
"RBFBlock",
|
||||
"GNOBlock"
|
||||
]
|
||||
|
||||
from .convolution_2d import ContinuousConvBlock
|
||||
from .residual import ResidualBlock, EnhancedLinear
|
||||
from .spectral import (
|
||||
SpectralConvBlock1D,
|
||||
SpectralConvBlock2D,
|
||||
SpectralConvBlock3D,
|
||||
)
|
||||
from .fourier import FourierBlock1D, FourierBlock2D, FourierBlock3D
|
||||
from .pod import PODBlock
|
||||
from .orthogonal import OrthogonalBlock
|
||||
from .embedding import PeriodicBoundaryEmbedding, FourierFeatureEmbedding
|
||||
from .avno_layer import AVNOBlock
|
||||
from .lowrank_layer import LowRankBlock
|
||||
from .rbf_layer import RBFBlock
|
||||
from .gno_block import GNOBlock
|
||||
@@ -2,7 +2,7 @@ import torch
|
||||
import torch.nn as nn
|
||||
from ...utils import check_consistency
|
||||
|
||||
from pina.model.layers import (
|
||||
from pina.model.block import (
|
||||
SpectralConvBlock1D,
|
||||
SpectralConvBlock2D,
|
||||
SpectralConvBlock3D,
|
||||
@@ -18,7 +18,7 @@ class MIONet(torch.nn.Module):
|
||||
.. seealso::
|
||||
|
||||
**Original reference**: Jin, Pengzhan, Shuai Meng, and Lu Lu.
|
||||
*MIONet: Learning multiple-input operators via tensor product.*
|
||||
*MIONet: Learning multiple-input operator via tensor product.*
|
||||
SIAM Journal on Scientific Computing 44.6 (2022): A3490-A351
|
||||
DOI: `10.1137/22M1477751
|
||||
<https://doi.org/10.1137/22M1477751>`_
|
||||
@@ -289,8 +289,8 @@ class DeepONet(MIONet):
|
||||
.. seealso::
|
||||
|
||||
**Original reference**: Lu, L., Jin, P., Pang, G. et al. *Learning
|
||||
nonlinear operators via DeepONet based on the universal approximation
|
||||
theorem of operators*. Nat Mach Intell 3, 218–229 (2021).
|
||||
nonlinear operator via DeepONet based on the universal approximation
|
||||
theorem of operator*. Nat Mach Intell 3, 218–229 (2021).
|
||||
DOI: `10.1038/s42256-021-00302-5
|
||||
<https://doi.org/10.1038/s42256-021-00302-5>`_
|
||||
|
||||
|
||||
@@ -3,7 +3,7 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from ..utils import check_consistency
|
||||
from .layers.residual import EnhancedLinear
|
||||
from .block.residual import EnhancedLinear
|
||||
|
||||
|
||||
class FeedForward(torch.nn.Module):
|
||||
|
||||
@@ -7,7 +7,7 @@ import torch.nn as nn
|
||||
from ..label_tensor import LabelTensor
|
||||
import warnings
|
||||
from ..utils import check_consistency
|
||||
from .layers.fourier import FourierBlock1D, FourierBlock2D, FourierBlock3D
|
||||
from .block.fourier import FourierBlock1D, FourierBlock2D, FourierBlock3D
|
||||
from .base_no import KernelNeuralOperator
|
||||
|
||||
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
import torch
|
||||
from torch.nn import Tanh
|
||||
from .layers import GNOBlock
|
||||
from .block import GNOBlock
|
||||
from .base_no import KernelNeuralOperator
|
||||
|
||||
|
||||
|
||||
@@ -1,35 +0,0 @@
|
||||
__all__ = [
|
||||
"ContinuousConvBlock",
|
||||
"ResidualBlock",
|
||||
"EnhancedLinear",
|
||||
"SpectralConvBlock1D",
|
||||
"SpectralConvBlock2D",
|
||||
"SpectralConvBlock3D",
|
||||
"FourierBlock1D",
|
||||
"FourierBlock2D",
|
||||
"FourierBlock3D",
|
||||
"PODBlock",
|
||||
"OrthogonalBlock",
|
||||
"PeriodicBoundaryEmbedding",
|
||||
"FourierFeatureEmbedding",
|
||||
"AVNOBlock",
|
||||
"LowRankBlock",
|
||||
"RBFBlock",
|
||||
"GNOBlock"
|
||||
]
|
||||
|
||||
from .convolution_2d import ContinuousConvBlock
|
||||
from .residual import ResidualBlock, EnhancedLinear
|
||||
from .spectral import (
|
||||
SpectralConvBlock1D,
|
||||
SpectralConvBlock2D,
|
||||
SpectralConvBlock3D,
|
||||
)
|
||||
from .fourier import FourierBlock1D, FourierBlock2D, FourierBlock3D
|
||||
from .pod import PODBlock
|
||||
from .orthogonal import OrthogonalBlock
|
||||
from .embedding import PeriodicBoundaryEmbedding, FourierFeatureEmbedding
|
||||
from .avno_layer import AVNOBlock
|
||||
from .lowrank_layer import LowRankBlock
|
||||
from .rbf_layer import RBFBlock
|
||||
from .gno_block import GNOBlock
|
||||
|
||||
@@ -3,10 +3,10 @@
|
||||
import torch
|
||||
from torch import nn, cat
|
||||
|
||||
from pina.utils import check_consistency
|
||||
from ..utils import check_consistency
|
||||
|
||||
from .base_no import KernelNeuralOperator
|
||||
from .layers.lowrank_layer import LowRankBlock
|
||||
from .block.lowrank_layer import LowRankBlock
|
||||
|
||||
|
||||
class LowRankNeuralOperator(KernelNeuralOperator):
|
||||
@@ -19,7 +19,7 @@ class LowRankNeuralOperator(KernelNeuralOperator):
|
||||
to other functions. It can be trained with Supervised or PINN based
|
||||
learning strategies.
|
||||
LowRankNeuralOperator does convolution by performing a low rank
|
||||
approximation, see :class:`~pina.model.layers.lowrank_layer.LowRankBlock`.
|
||||
approximation, see :class:`~pina.model.block.lowrank_layer.LowRankBlock`.
|
||||
|
||||
.. seealso::
|
||||
|
||||
|
||||
@@ -1,7 +1,6 @@
|
||||
"""Module for Spline model"""
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from ..utils import check_consistency
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user