Renaming
* solvers -> solver * adaptive_functions -> adaptive_function * callbacks -> callback * operators -> operator * pinns -> physics_informed_solver * layers -> block
This commit is contained in:
committed by
Nicola Demo
parent
810d215ca0
commit
df673cad4e
571
pina/model/block/convolution_2d.py
Normal file
571
pina/model/block/convolution_2d.py
Normal file
@@ -0,0 +1,571 @@
|
||||
"""Module for Continuous Convolution class"""
|
||||
|
||||
from .convolution import BaseContinuousConv
|
||||
from .utils_convolution import check_point, map_points_
|
||||
from .integral import Integral
|
||||
import torch
|
||||
|
||||
|
||||
class ContinuousConvBlock(BaseContinuousConv):
|
||||
"""
|
||||
Implementation of Continuous Convolutional operator.
|
||||
|
||||
The algorithm expects input to be in the form:
|
||||
:math:`[B, N_{in}, N, D]`
|
||||
where :math:`B` is the batch_size, :math:`N_{in}` is the number of input
|
||||
fields, :math:`N` the number of points in the mesh, :math:`D` the dimension
|
||||
of the problem. In particular:
|
||||
|
||||
* :math:`D` is the number of spatial variables + 1. The last column must
|
||||
contain the field value. For example for 2D problems :math:`D=3` and
|
||||
the tensor will be something like ``[first coordinate, second
|
||||
coordinate, field value]``.
|
||||
* :math:`N_{in}` represents the number of vectorial function presented.
|
||||
For example a vectorial function :math:`f = [f_1, f_2]` will have
|
||||
:math:`N_{in}=2`.
|
||||
|
||||
.. seealso::
|
||||
|
||||
**Original reference**: Coscia, D., Meneghetti, L., Demo, N. et al.
|
||||
*A continuous convolutional trainable filter for modelling unstructured data*.
|
||||
Comput Mech 72, 253–265 (2023). DOI `<https://doi.org/10.1007/s00466-023-02291-1>`_
|
||||
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
input_numb_field,
|
||||
output_numb_field,
|
||||
filter_dim,
|
||||
stride,
|
||||
model=None,
|
||||
optimize=False,
|
||||
no_overlap=False,
|
||||
):
|
||||
"""
|
||||
:param input_numb_field: Number of fields :math:`N_{in}` in the input.
|
||||
:type input_numb_field: int
|
||||
:param output_numb_field: Number of fields :math:`N_{out}` in the output.
|
||||
:type output_numb_field: int
|
||||
:param filter_dim: Dimension of the filter.
|
||||
:type filter_dim: tuple(int) | list(int)
|
||||
:param stride: Stride for the filter.
|
||||
:type stride: dict
|
||||
:param model: Neural network for inner parametrization,
|
||||
defaults to ``None``. If None, a default multilayer perceptron
|
||||
of width three and size twenty with ReLU activation is used.
|
||||
:type model: torch.nn.Module
|
||||
:param optimize: Flag for performing optimization on the continuous
|
||||
filter, defaults to False. The flag `optimize=True` should be
|
||||
used only when the scatter datapoints are fixed through the
|
||||
training. If torch model is in ``.eval()`` mode, the flag is
|
||||
automatically set to False always.
|
||||
:type optimize: bool
|
||||
:param no_overlap: Flag for performing optimization on the transpose
|
||||
continuous filter, defaults to False. The flag set to `True` should
|
||||
be used only when the filter positions do not overlap for different
|
||||
strides. RuntimeError will raise in case of non-compatible strides.
|
||||
:type no_overlap: bool
|
||||
|
||||
.. note::
|
||||
Using `optimize=True` the filter can be use either in `forward`
|
||||
or in `transpose` mode, not both. If `optimize=False` the same
|
||||
filter can be used for both `transpose` and `forward` modes.
|
||||
|
||||
:Example:
|
||||
>>> class MLP(torch.nn.Module):
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
self. model = torch.nn.Sequential(
|
||||
torch.nn.Linear(2, 8),
|
||||
torch.nn.ReLU(),
|
||||
torch.nn.Linear(8, 8),
|
||||
torch.nn.ReLU(),
|
||||
torch.nn.Linear(8, 1))
|
||||
def forward(self, x):
|
||||
return self.model(x)
|
||||
>>> dim = [3, 3]
|
||||
>>> stride = {"domain": [10, 10],
|
||||
"start": [0, 0],
|
||||
"jumps": [3, 3],
|
||||
"direction": [1, 1.]}
|
||||
>>> conv = ContinuousConv2D(1, 2, dim, stride, MLP)
|
||||
>>> conv
|
||||
ContinuousConv2D(
|
||||
(_net): ModuleList(
|
||||
(0): MLP(
|
||||
(model): Sequential(
|
||||
(0): Linear(in_features=2, out_features=8, bias=True)
|
||||
(1): ReLU()
|
||||
(2): Linear(in_features=8, out_features=8, bias=True)
|
||||
(3): ReLU()
|
||||
(4): Linear(in_features=8, out_features=1, bias=True)
|
||||
)
|
||||
)
|
||||
(1): MLP(
|
||||
(model): Sequential(
|
||||
(0): Linear(in_features=2, out_features=8, bias=True)
|
||||
(1): ReLU()
|
||||
(2): Linear(in_features=8, out_features=8, bias=True)
|
||||
(3): ReLU()
|
||||
(4): Linear(in_features=8, out_features=1, bias=True)
|
||||
)
|
||||
)
|
||||
)
|
||||
)
|
||||
"""
|
||||
|
||||
super().__init__(
|
||||
input_numb_field=input_numb_field,
|
||||
output_numb_field=output_numb_field,
|
||||
filter_dim=filter_dim,
|
||||
stride=stride,
|
||||
model=model,
|
||||
optimize=optimize,
|
||||
no_overlap=no_overlap,
|
||||
)
|
||||
|
||||
# integral routine
|
||||
self._integral = Integral("discrete")
|
||||
|
||||
# create the network
|
||||
self._net = self._spawn_networks(model)
|
||||
|
||||
# stride for continuous convolution overridden
|
||||
self._stride = self._stride._stride_discrete
|
||||
|
||||
def _spawn_networks(self, model):
|
||||
"""
|
||||
Private method to create a collection of kernels
|
||||
|
||||
:param model: A :class:`torch.nn.Module` model in form of Object class.
|
||||
:type model: torch.nn.Module
|
||||
:return: List of :class:`torch.nn.Module` models.
|
||||
:rtype: torch.nn.ModuleList
|
||||
|
||||
"""
|
||||
nets = []
|
||||
if self._net is None:
|
||||
for _ in range(self._input_numb_field * self._output_numb_field):
|
||||
tmp = ContinuousConvBlock.DefaultKernel(len(self._dim), 1)
|
||||
nets.append(tmp)
|
||||
else:
|
||||
if not isinstance(model, object):
|
||||
raise ValueError(
|
||||
"Expected a python class inheriting" " from torch.nn.Module"
|
||||
)
|
||||
|
||||
for _ in range(self._input_numb_field * self._output_numb_field):
|
||||
tmp = model()
|
||||
if not isinstance(tmp, torch.nn.Module):
|
||||
raise ValueError(
|
||||
"The python class must be inherited from"
|
||||
" torch.nn.Module. See the docstring for"
|
||||
" an example."
|
||||
)
|
||||
nets.append(tmp)
|
||||
|
||||
return torch.nn.ModuleList(nets)
|
||||
|
||||
def _extract_mapped_points(self, batch_idx, index, x):
|
||||
"""
|
||||
Priviate method to extract mapped points in the filter
|
||||
|
||||
:param x: Input tensor of shape ``[channel, N, dim]``
|
||||
:type x: torch.Tensor
|
||||
:return: Mapped points and indeces for each channel,
|
||||
:rtype: torch.Tensor, list
|
||||
|
||||
"""
|
||||
mapped_points = []
|
||||
indeces_channels = []
|
||||
|
||||
for stride_idx, current_stride in enumerate(self._stride):
|
||||
|
||||
# indeces of points falling into filter range
|
||||
indeces = index[stride_idx][batch_idx]
|
||||
|
||||
# how many points for each channel fall into the filter?
|
||||
numb_points_insiede = torch.sum(indeces, dim=-1).tolist()
|
||||
|
||||
# extracting points for each channel
|
||||
# shape: [sum(numb_points_insiede), filter_dim + 1]
|
||||
point_stride = x[indeces]
|
||||
|
||||
# mapping points in filter domain
|
||||
map_points_(point_stride[..., :-1], current_stride)
|
||||
|
||||
# extracting points for each channel
|
||||
point_stride_channel = point_stride.split(numb_points_insiede)
|
||||
|
||||
# appending in list for later use
|
||||
mapped_points.append(point_stride_channel)
|
||||
indeces_channels.append(numb_points_insiede)
|
||||
|
||||
# stacking input for passing to neural net
|
||||
mapping = map(torch.cat, zip(*mapped_points))
|
||||
stacked_input = tuple(mapping)
|
||||
indeces_channels = tuple(zip(*indeces_channels))
|
||||
|
||||
return stacked_input, indeces_channels
|
||||
|
||||
def _find_index(self, X):
|
||||
"""
|
||||
Private method to extract indeces for convolution.
|
||||
|
||||
:param X: Input tensor, as in ContinuousConvBlock ``__init__``.
|
||||
:type X: torch.Tensor
|
||||
|
||||
"""
|
||||
# append the index for each stride
|
||||
index = []
|
||||
for _, current_stride in enumerate(self._stride):
|
||||
|
||||
tmp = check_point(X, current_stride, self._dim)
|
||||
index.append(tmp)
|
||||
|
||||
# storing the index
|
||||
self._index = index
|
||||
|
||||
def _make_grid_forward(self, X):
|
||||
"""
|
||||
Private method to create forward convolution grid.
|
||||
|
||||
:param X: Input tensor, as in ContinuousConvBlock docstring.
|
||||
:type X: torch.Tensor
|
||||
|
||||
"""
|
||||
# filter dimension + number of points in output grid
|
||||
filter_dim = len(self._dim)
|
||||
number_points = len(self._stride)
|
||||
|
||||
# initialize the grid
|
||||
grid = torch.zeros(
|
||||
size=(
|
||||
X.shape[0],
|
||||
self._output_numb_field,
|
||||
number_points,
|
||||
filter_dim + 1,
|
||||
),
|
||||
device=X.device,
|
||||
dtype=X.dtype,
|
||||
)
|
||||
grid[..., :-1] = self._stride + self._dim * 0.5
|
||||
|
||||
# saving the grid
|
||||
self._grid = grid.detach()
|
||||
|
||||
def _make_grid_transpose(self, X):
|
||||
"""
|
||||
Private method to create transpose convolution grid.
|
||||
|
||||
:param X: Input tensor, as in ContinuousConvBlock docstring.
|
||||
:type X: torch.Tensor
|
||||
|
||||
|
||||
"""
|
||||
# initialize to all zeros
|
||||
tmp = torch.zeros_like(X)
|
||||
tmp[..., :-1] = X[..., :-1]
|
||||
|
||||
# save on tmp
|
||||
self._grid_transpose = tmp
|
||||
|
||||
def _make_grid(self, X, type):
|
||||
"""
|
||||
Private method to create convolution grid.
|
||||
|
||||
:param X: Input tensor, as in ContinuousConvBlock docstring.
|
||||
:type X: torch.Tensor
|
||||
:param type: Type of convolution, ``['forward', 'inverse']`` the
|
||||
possibilities.
|
||||
:type type: str
|
||||
|
||||
"""
|
||||
# choose the type of convolution
|
||||
if type == "forward":
|
||||
return self._make_grid_forward(X)
|
||||
elif type == "inverse":
|
||||
self._make_grid_transpose(X)
|
||||
else:
|
||||
raise TypeError
|
||||
|
||||
def _initialize_convolution(self, X, type="forward"):
|
||||
"""
|
||||
Private method to intialize the convolution.
|
||||
The convolution is initialized by setting a grid and
|
||||
calculate the index for finding the points inside the
|
||||
filter.
|
||||
|
||||
:param X: Input tensor, as in ContinuousConvBlock docstring.
|
||||
:type X: torch.Tensor
|
||||
:param str type: type of convolution, ``['forward', 'inverse'] ``the
|
||||
possibilities.
|
||||
"""
|
||||
|
||||
# variable for the convolution
|
||||
self._make_grid(X, type)
|
||||
|
||||
# calculate the index
|
||||
self._find_index(X)
|
||||
|
||||
def forward(self, X):
|
||||
"""
|
||||
Forward pass in the convolutional layer.
|
||||
|
||||
:param x: Input data for the convolution :math:`[B, N_{in}, N, D]`.
|
||||
:type x: torch.Tensor
|
||||
:return: Convolution output :math:`[B, N_{out}, N, D]`.
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
|
||||
# initialize convolution
|
||||
if self.training: # we choose what to do based on optimization
|
||||
self._choose_initialization(X, type="forward")
|
||||
|
||||
else: # we always initialize on testing
|
||||
self._initialize_convolution(X, "forward")
|
||||
|
||||
# create convolutional array
|
||||
conv = self._grid.clone().detach()
|
||||
|
||||
# total number of fields
|
||||
tot_dim = self._output_numb_field * self._input_numb_field
|
||||
|
||||
for batch_idx, x in enumerate(X):
|
||||
|
||||
# extract mapped points
|
||||
stacked_input, indeces_channels = self._extract_mapped_points(
|
||||
batch_idx, self._index, x
|
||||
)
|
||||
|
||||
# compute the convolution
|
||||
|
||||
# storing intermidiate results for each channel convolution
|
||||
res_tmp = []
|
||||
# for each field
|
||||
for idx_conv in range(tot_dim):
|
||||
# index for each input field
|
||||
idx = idx_conv % self._input_numb_field
|
||||
# extract input for each channel
|
||||
single_channel_input = stacked_input[idx]
|
||||
# extract filter
|
||||
net = self._net[idx_conv]
|
||||
# calculate filter value
|
||||
staked_output = net(single_channel_input[..., :-1])
|
||||
# perform integral for all strides in one field
|
||||
integral = self._integral(
|
||||
staked_output,
|
||||
single_channel_input[..., -1],
|
||||
indeces_channels[idx],
|
||||
)
|
||||
res_tmp.append(integral)
|
||||
|
||||
# stacking integral results
|
||||
res_tmp = torch.stack(res_tmp)
|
||||
|
||||
# sum filters (for each input fields) in groups
|
||||
# for different ouput fields
|
||||
conv[batch_idx, ..., -1] = res_tmp.reshape(
|
||||
self._output_numb_field, self._input_numb_field, -1
|
||||
).sum(1)
|
||||
return conv
|
||||
|
||||
def transpose_no_overlap(self, integrals, X):
|
||||
"""
|
||||
Transpose pass in the layer for no-overlapping filters
|
||||
|
||||
:param integrals: Weights for the transpose convolution. Shape
|
||||
:math:`[B, N_{in}, N]`
|
||||
where B is the batch_size, :math`N_{in}` is the number of input
|
||||
fields, :math:`N` the number of points in the mesh, D the dimension
|
||||
of the problem.
|
||||
:type integral: torch.tensor
|
||||
:param X: Input data. Expect tensor of shape
|
||||
:math:`[B, N_{in}, M, D]` where :math:`B` is the batch_size,
|
||||
:math`N_{in}`is the number of input fields, :math:`M` the number of points
|
||||
in the mesh, :math:`D` the dimension of the problem.
|
||||
:type X: torch.Tensor
|
||||
:return: Feed forward transpose convolution. Tensor of shape
|
||||
:math:`[B, N_{out}, M, D]` where :math:`B` is the batch_size,
|
||||
:math`N_{out}`is the number of input fields, :math:`M` the number of points
|
||||
in the mesh, :math:`D` the dimension of the problem.
|
||||
:rtype: torch.Tensor
|
||||
|
||||
.. note::
|
||||
This function is automatically called when ``.transpose()``
|
||||
method is used and ``no_overlap=True``
|
||||
"""
|
||||
|
||||
# initialize convolution
|
||||
if self.training: # we choose what to do based on optimization
|
||||
self._choose_initialization(X, type="inverse")
|
||||
|
||||
else: # we always initialize on testing
|
||||
self._initialize_convolution(X, "inverse")
|
||||
|
||||
# initialize grid
|
||||
X = self._grid_transpose.clone().detach()
|
||||
conv_transposed = self._grid_transpose.clone().detach()
|
||||
|
||||
# total number of dim
|
||||
tot_dim = self._input_numb_field * self._output_numb_field
|
||||
|
||||
for batch_idx, x in enumerate(X):
|
||||
|
||||
# extract mapped points
|
||||
stacked_input, indeces_channels = self._extract_mapped_points(
|
||||
batch_idx, self._index, x
|
||||
)
|
||||
|
||||
# compute the transpose convolution
|
||||
|
||||
# total number of fields
|
||||
res_tmp = []
|
||||
|
||||
# for each field
|
||||
for idx_conv in range(tot_dim):
|
||||
# index for each output field
|
||||
idx = idx_conv % self._output_numb_field
|
||||
# index for each input field
|
||||
idx_in = idx_conv % self._input_numb_field
|
||||
# extract input for each field
|
||||
single_channel_input = stacked_input[idx]
|
||||
rep_idx = torch.tensor(indeces_channels[idx])
|
||||
integral = integrals[batch_idx, idx_in, :].repeat_interleave(
|
||||
rep_idx
|
||||
)
|
||||
# extract filter
|
||||
net = self._net[idx_conv]
|
||||
# perform transpose convolution for all strides in one field
|
||||
staked_output = net(single_channel_input[..., :-1]).flatten()
|
||||
integral = staked_output * integral
|
||||
res_tmp.append(integral)
|
||||
|
||||
# stacking integral results and sum
|
||||
# filters (for each input fields) in groups
|
||||
# for different output fields
|
||||
res_tmp = (
|
||||
torch.stack(res_tmp)
|
||||
.reshape(self._input_numb_field, self._output_numb_field, -1)
|
||||
.sum(0)
|
||||
)
|
||||
conv_transposed[batch_idx, ..., -1] = res_tmp
|
||||
|
||||
return conv_transposed
|
||||
|
||||
def transpose_overlap(self, integrals, X):
|
||||
"""
|
||||
Transpose pass in the layer for overlapping filters
|
||||
|
||||
:param integrals: Weights for the transpose convolution. Shape
|
||||
:math:`[B, N_{in}, N]`
|
||||
where B is the batch_size, :math`N_{in}` is the number of input
|
||||
fields, :math:`N` the number of points in the mesh, D the dimension
|
||||
of the problem.
|
||||
:type integral: torch.tensor
|
||||
:param X: Input data. Expect tensor of shape
|
||||
:math:`[B, N_{in}, M, D]` where :math:`B` is the batch_size,
|
||||
:math`N_{in}`is the number of input fields, :math:`M` the number of points
|
||||
in the mesh, :math:`D` the dimension of the problem.
|
||||
:type X: torch.Tensor
|
||||
:return: Feed forward transpose convolution. Tensor of shape
|
||||
:math:`[B, N_{out}, M, D]` where :math:`B` is the batch_size,
|
||||
:math`N_{out}`is the number of input fields, :math:`M` the number of points
|
||||
in the mesh, :math:`D` the dimension of the problem.
|
||||
:rtype: torch.Tensor
|
||||
|
||||
.. note:: This function is automatically called when ``.transpose()``
|
||||
method is used and ``no_overlap=False``
|
||||
"""
|
||||
|
||||
# initialize convolution
|
||||
if self.training: # we choose what to do based on optimization
|
||||
self._choose_initialization(X, type="inverse")
|
||||
|
||||
else: # we always initialize on testing
|
||||
self._initialize_convolution(X, "inverse")
|
||||
|
||||
# initialize grid
|
||||
X = self._grid_transpose.clone().detach()
|
||||
conv_transposed = self._grid_transpose.clone().detach()
|
||||
|
||||
# list to iterate for calculating nn output
|
||||
tmp = [i for i in range(self._output_numb_field)]
|
||||
iterate_conv = [
|
||||
item for item in tmp for _ in range(self._input_numb_field)
|
||||
]
|
||||
|
||||
for batch_idx, x in enumerate(X):
|
||||
|
||||
# accumulator for the convolution on different batches
|
||||
accumulator_batch = torch.zeros(
|
||||
size=(
|
||||
self._grid_transpose.shape[1],
|
||||
self._grid_transpose.shape[2],
|
||||
),
|
||||
requires_grad=True,
|
||||
device=X.device,
|
||||
dtype=X.dtype,
|
||||
).clone()
|
||||
|
||||
for stride_idx, current_stride in enumerate(self._stride):
|
||||
# indeces of points falling into filter range
|
||||
indeces = self._index[stride_idx][batch_idx]
|
||||
|
||||
# number of points for each channel
|
||||
numb_pts_channel = tuple(indeces.sum(dim=-1))
|
||||
|
||||
# extracting points for each channel
|
||||
point_stride = x[indeces]
|
||||
|
||||
# if no points to upsample we just skip
|
||||
if point_stride.nelement() == 0:
|
||||
continue
|
||||
|
||||
# mapping points in filter domain
|
||||
map_points_(point_stride[..., :-1], current_stride)
|
||||
|
||||
# input points for kernels
|
||||
# we split for extracting number of points for each channel
|
||||
nn_input_pts = point_stride[..., :-1].split(numb_pts_channel)
|
||||
|
||||
# accumulate partial convolution results for each field
|
||||
res_tmp = []
|
||||
|
||||
# for each channel field compute transpose convolution
|
||||
for idx_conv, idx_channel_out in enumerate(iterate_conv):
|
||||
|
||||
# index for input channels
|
||||
idx_channel_in = idx_conv % self._input_numb_field
|
||||
|
||||
# extract filter
|
||||
net = self._net[idx_conv]
|
||||
|
||||
# calculate filter value
|
||||
staked_output = net(nn_input_pts[idx_channel_out])
|
||||
|
||||
# perform integral for all strides in one field
|
||||
integral = (
|
||||
staked_output
|
||||
* integrals[batch_idx, idx_channel_in, stride_idx]
|
||||
)
|
||||
# append results
|
||||
res_tmp.append(integral.flatten())
|
||||
|
||||
# computing channel sum
|
||||
channel_sum = []
|
||||
start = 0
|
||||
for _ in range(self._output_numb_field):
|
||||
tmp = res_tmp[start : start + self._input_numb_field]
|
||||
tmp = torch.vstack(tmp).sum(dim=0)
|
||||
channel_sum.append(tmp)
|
||||
start += self._input_numb_field
|
||||
|
||||
# accumulate the results
|
||||
accumulator_batch[indeces] += torch.hstack(channel_sum)
|
||||
|
||||
# save results of accumulation for each batch
|
||||
conv_transposed[batch_idx, ..., -1] = accumulator_batch
|
||||
|
||||
return conv_transposed
|
||||
Reference in New Issue
Block a user