Renaming
* solvers -> solver * adaptive_functions -> adaptive_function * callbacks -> callback * operators -> operator * pinns -> physics_informed_solver * layers -> block
This commit is contained in:
committed by
Nicola Demo
parent
810d215ca0
commit
df673cad4e
219
pina/model/block/fourier.py
Normal file
219
pina/model/block/fourier.py
Normal file
@@ -0,0 +1,219 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from ...utils import check_consistency
|
||||
|
||||
from pina.model.block import (
|
||||
SpectralConvBlock1D,
|
||||
SpectralConvBlock2D,
|
||||
SpectralConvBlock3D,
|
||||
)
|
||||
|
||||
|
||||
class FourierBlock1D(nn.Module):
|
||||
"""
|
||||
Fourier block implementation for three dimensional
|
||||
input tensor. The combination of Fourier blocks
|
||||
make up the Fourier Neural Operator
|
||||
|
||||
.. seealso::
|
||||
|
||||
**Original reference**: Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B.,
|
||||
Bhattacharya, K., Stuart, A., & Anandkumar, A. (2020). *Fourier neural operator for
|
||||
parametric partial differential equations*.
|
||||
DOI: `arXiv preprint arXiv:2010.08895.
|
||||
<https://arxiv.org/abs/2010.08895>`_
|
||||
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
input_numb_fields,
|
||||
output_numb_fields,
|
||||
n_modes,
|
||||
activation=torch.nn.Tanh,
|
||||
):
|
||||
super().__init__()
|
||||
"""
|
||||
PINA implementation of Fourier block one dimension. The module computes
|
||||
the spectral convolution of the input with a linear kernel in the
|
||||
fourier space, and then it maps the input back to the physical
|
||||
space. The output is then added to a Linear tranformation of the
|
||||
input in the physical space. Finally an activation function is
|
||||
applied to the output.
|
||||
|
||||
The block expects an input of size ``[batch, input_numb_fields, N]``
|
||||
and returns an output of size ``[batch, output_numb_fields, N]``.
|
||||
|
||||
:param int input_numb_fields: The number of channels for the input.
|
||||
:param int output_numb_fields: The number of channels for the output.
|
||||
:param list | tuple n_modes: Number of modes to select for each dimension.
|
||||
It must be at most equal to the ``floor(N/2)+1``.
|
||||
:param torch.nn.Module activation: The activation function.
|
||||
"""
|
||||
# check type consistency
|
||||
check_consistency(activation(), nn.Module)
|
||||
|
||||
# assign variables
|
||||
self._spectral_conv = SpectralConvBlock1D(
|
||||
input_numb_fields=input_numb_fields,
|
||||
output_numb_fields=output_numb_fields,
|
||||
n_modes=n_modes,
|
||||
)
|
||||
self._activation = activation()
|
||||
self._linear = nn.Conv1d(input_numb_fields, output_numb_fields, 1)
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Forward computation for Fourier Block. It performs a spectral
|
||||
convolution and a linear transformation of the input and sum the
|
||||
results.
|
||||
|
||||
:param x: The input tensor for fourier block, expect of size
|
||||
``[batch, input_numb_fields, x]``.
|
||||
:type x: torch.Tensor
|
||||
:return: The output tensor obtained from the
|
||||
fourier block of size ``[batch, output_numb_fields, x]``.
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
return self._activation(self._spectral_conv(x) + self._linear(x))
|
||||
|
||||
|
||||
class FourierBlock2D(nn.Module):
|
||||
"""
|
||||
Fourier block implementation for two dimensional
|
||||
input tensor. The combination of Fourier blocks
|
||||
make up the Fourier Neural Operator
|
||||
|
||||
.. seealso::
|
||||
|
||||
**Original reference**: Li, Zongyi, et al.
|
||||
*Fourier neural operator for parametric partial
|
||||
differential equations*. arXiv preprint
|
||||
arXiv:2010.08895 (2020)
|
||||
<https://arxiv.org/abs/2010.08895.pdf>`_.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
input_numb_fields,
|
||||
output_numb_fields,
|
||||
n_modes,
|
||||
activation=torch.nn.Tanh,
|
||||
):
|
||||
"""
|
||||
PINA implementation of Fourier block two dimensions. The module computes
|
||||
the spectral convolution of the input with a linear kernel in the
|
||||
fourier space, and then it maps the input back to the physical
|
||||
space. The output is then added to a Linear tranformation of the
|
||||
input in the physical space. Finally an activation function is
|
||||
applied to the output.
|
||||
|
||||
The block expects an input of size ``[batch, input_numb_fields, Nx, Ny]``
|
||||
and returns an output of size ``[batch, output_numb_fields, Nx, Ny]``.
|
||||
|
||||
:param int input_numb_fields: The number of channels for the input.
|
||||
:param int output_numb_fields: The number of channels for the output.
|
||||
:param list | tuple n_modes: Number of modes to select for each dimension.
|
||||
It must be at most equal to the ``floor(Nx/2)+1`` and ``floor(Ny/2)+1``.
|
||||
:param torch.nn.Module activation: The activation function.
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
# check type consistency
|
||||
check_consistency(activation(), nn.Module)
|
||||
|
||||
# assign variables
|
||||
self._spectral_conv = SpectralConvBlock2D(
|
||||
input_numb_fields=input_numb_fields,
|
||||
output_numb_fields=output_numb_fields,
|
||||
n_modes=n_modes,
|
||||
)
|
||||
self._activation = activation()
|
||||
self._linear = nn.Conv2d(input_numb_fields, output_numb_fields, 1)
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Forward computation for Fourier Block. It performs a spectral
|
||||
convolution and a linear transformation of the input and sum the
|
||||
results.
|
||||
|
||||
:param x: The input tensor for fourier block, expect of size
|
||||
``[batch, input_numb_fields, x, y]``.
|
||||
:type x: torch.Tensor
|
||||
:return: The output tensor obtained from the
|
||||
fourier block of size ``[batch, output_numb_fields, x, y, z]``.
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
return self._activation(self._spectral_conv(x) + self._linear(x))
|
||||
|
||||
|
||||
class FourierBlock3D(nn.Module):
|
||||
"""
|
||||
Fourier block implementation for three dimensional
|
||||
input tensor. The combination of Fourier blocks
|
||||
make up the Fourier Neural Operator
|
||||
|
||||
.. seealso::
|
||||
|
||||
**Original reference**: Li, Zongyi, et al.
|
||||
*Fourier neural operator for parametric partial
|
||||
differential equations*. arXiv preprint
|
||||
arXiv:2010.08895 (2020)
|
||||
<https://arxiv.org/abs/2010.08895.pdf>`_.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
input_numb_fields,
|
||||
output_numb_fields,
|
||||
n_modes,
|
||||
activation=torch.nn.Tanh,
|
||||
):
|
||||
"""
|
||||
PINA implementation of Fourier block three dimensions. The module computes
|
||||
the spectral convolution of the input with a linear kernel in the
|
||||
fourier space, and then it maps the input back to the physical
|
||||
space. The output is then added to a Linear tranformation of the
|
||||
input in the physical space. Finally an activation function is
|
||||
applied to the output.
|
||||
|
||||
The block expects an input of size ``[batch, input_numb_fields, Nx, Ny, Nz]``
|
||||
and returns an output of size ``[batch, output_numb_fields, Nx, Ny, Nz]``.
|
||||
|
||||
:param int input_numb_fields: The number of channels for the input.
|
||||
:param int output_numb_fields: The number of channels for the output.
|
||||
:param list | tuple n_modes: Number of modes to select for each dimension.
|
||||
It must be at most equal to the ``floor(Nx/2)+1``, ``floor(Ny/2)+1``
|
||||
and ``floor(Nz/2)+1``.
|
||||
:param torch.nn.Module activation: The activation function.
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
# check type consistency
|
||||
check_consistency(activation(), nn.Module)
|
||||
|
||||
# assign variables
|
||||
self._spectral_conv = SpectralConvBlock3D(
|
||||
input_numb_fields=input_numb_fields,
|
||||
output_numb_fields=output_numb_fields,
|
||||
n_modes=n_modes,
|
||||
)
|
||||
self._activation = activation()
|
||||
self._linear = nn.Conv3d(input_numb_fields, output_numb_fields, 1)
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Forward computation for Fourier Block. It performs a spectral
|
||||
convolution and a linear transformation of the input and sum the
|
||||
results.
|
||||
|
||||
:param x: The input tensor for fourier block, expect of size
|
||||
``[batch, input_numb_fields, x, y, z]``.
|
||||
:type x: torch.Tensor
|
||||
:return: The output tensor obtained from the
|
||||
fourier block of size ``[batch, output_numb_fields, x, y, z]``.
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
return self._activation(self._spectral_conv(x) + self._linear(x))
|
||||
Reference in New Issue
Block a user