Renaming
* solvers -> solver * adaptive_functions -> adaptive_function * callbacks -> callback * operators -> operator * pinns -> physics_informed_solver * layers -> block
This commit is contained in:
committed by
Nicola Demo
parent
810d215ca0
commit
df673cad4e
164
pina/model/block/residual.py
Normal file
164
pina/model/block/residual.py
Normal file
@@ -0,0 +1,164 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from ...utils import check_consistency
|
||||
|
||||
|
||||
class ResidualBlock(nn.Module):
|
||||
"""Residual block base class. Implementation of a residual block.
|
||||
|
||||
.. seealso::
|
||||
|
||||
**Original reference**: He, Kaiming, et al.
|
||||
*Deep residual learning for image recognition.*
|
||||
Proceedings of the IEEE conference on computer vision
|
||||
and pattern recognition. 2016..
|
||||
DOI: `<https://arxiv.org/pdf/1512.03385.pdf>`_.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
input_dim,
|
||||
output_dim,
|
||||
hidden_dim,
|
||||
spectral_norm=False,
|
||||
activation=torch.nn.ReLU(),
|
||||
):
|
||||
"""
|
||||
Initializes the ResidualBlock module.
|
||||
|
||||
:param int input_dim: Dimension of the input to pass to the
|
||||
feedforward linear layer.
|
||||
:param int output_dim: Dimension of the output from the
|
||||
residual layer.
|
||||
:param int hidden_dim: Hidden dimension for mapping the input
|
||||
(first block).
|
||||
:param bool spectral_norm: Apply spectral normalization to feedforward
|
||||
layers, defaults to False.
|
||||
:param torch.nn.Module activation: Cctivation function after first block.
|
||||
|
||||
"""
|
||||
super().__init__()
|
||||
# check consistency
|
||||
check_consistency(spectral_norm, bool)
|
||||
check_consistency(input_dim, int)
|
||||
check_consistency(output_dim, int)
|
||||
check_consistency(hidden_dim, int)
|
||||
check_consistency(activation, torch.nn.Module)
|
||||
|
||||
# assign variables
|
||||
self._spectral_norm = spectral_norm
|
||||
self._input_dim = input_dim
|
||||
self._output_dim = output_dim
|
||||
self._hidden_dim = hidden_dim
|
||||
self._activation = activation
|
||||
|
||||
# create layers
|
||||
self._l1 = self._spect_norm(nn.Linear(input_dim, hidden_dim))
|
||||
self._l2 = self._spect_norm(nn.Linear(hidden_dim, output_dim))
|
||||
self._l3 = self._spect_norm(nn.Linear(input_dim, output_dim))
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward pass for residual block layer.
|
||||
|
||||
:param torch.Tensor x: Input tensor for the residual layer.
|
||||
:return: Output tensor for the residual layer.
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
y = self._activation(self._l1(x))
|
||||
y = self._l2(y)
|
||||
x = self._l3(x)
|
||||
return y + x
|
||||
|
||||
def _spect_norm(self, x):
|
||||
"""Perform spectral norm on the layers.
|
||||
|
||||
:param x: A torch.nn.Module Linear layer
|
||||
:type x: torch.nn.Module
|
||||
:return: The spectral norm of the layer
|
||||
:rtype: torch.nn.Module
|
||||
"""
|
||||
return nn.utils.spectral_norm(x) if self._spectral_norm else x
|
||||
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
class EnhancedLinear(torch.nn.Module):
|
||||
"""
|
||||
A wrapper class for enhancing a linear layer with activation and/or dropout.
|
||||
|
||||
:param layer: The linear layer to be enhanced.
|
||||
:type layer: torch.nn.Module
|
||||
:param activation: The activation function to be applied after the linear layer.
|
||||
:type activation: torch.nn.Module
|
||||
:param dropout: The dropout probability to be applied after the activation (if provided).
|
||||
:type dropout: float
|
||||
|
||||
:Example:
|
||||
|
||||
>>> linear_layer = torch.nn.Linear(10, 20)
|
||||
>>> activation = torch.nn.ReLU()
|
||||
>>> dropout_prob = 0.5
|
||||
>>> enhanced_linear = EnhancedLinear(linear_layer, activation, dropout_prob)
|
||||
"""
|
||||
|
||||
def __init__(self, layer, activation=None, dropout=None):
|
||||
"""
|
||||
Initializes the EnhancedLinear module.
|
||||
|
||||
:param layer: The linear layer to be enhanced.
|
||||
:type layer: torch.nn.Module
|
||||
:param activation: The activation function to be applied after the linear layer.
|
||||
:type activation: torch.nn.Module
|
||||
:param dropout: The dropout probability to be applied after the activation (if provided).
|
||||
:type dropout: float
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
# check consistency
|
||||
check_consistency(layer, nn.Module)
|
||||
if activation is not None:
|
||||
check_consistency(activation, nn.Module)
|
||||
if dropout is not None:
|
||||
check_consistency(dropout, float)
|
||||
|
||||
# assign forward
|
||||
if (dropout is None) and (activation is None):
|
||||
self._model = torch.nn.Sequential(layer)
|
||||
|
||||
elif (dropout is None) and (activation is not None):
|
||||
self._model = torch.nn.Sequential(layer, activation)
|
||||
|
||||
elif (dropout is not None) and (activation is None):
|
||||
self._model = torch.nn.Sequential(layer, self._drop(dropout))
|
||||
|
||||
elif (dropout is not None) and (activation is not None):
|
||||
self._model = torch.nn.Sequential(
|
||||
layer, activation, self._drop(dropout)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Forward pass through the enhanced linear module.
|
||||
|
||||
:param x: Input tensor.
|
||||
:type x: torch.Tensor
|
||||
|
||||
:return: Output tensor after passing through the enhanced linear module.
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
return self._model(x)
|
||||
|
||||
def _drop(self, p):
|
||||
"""
|
||||
Applies dropout with probability p.
|
||||
|
||||
:param p: Dropout probability.
|
||||
:type p: float
|
||||
|
||||
:return: Dropout layer with the specified probability.
|
||||
:rtype: torch.nn.Dropout
|
||||
"""
|
||||
return torch.nn.Dropout(p)
|
||||
Reference in New Issue
Block a user