Renaming
* solvers -> solver * adaptive_functions -> adaptive_function * callbacks -> callback * operators -> operator * pinns -> physics_informed_solver * layers -> block
This commit is contained in:
committed by
Nicola Demo
parent
810d215ca0
commit
df673cad4e
118
pina/solver/physic_informed_solver/pinn.py
Normal file
118
pina/solver/physic_informed_solver/pinn.py
Normal file
@@ -0,0 +1,118 @@
|
||||
""" Module for Physics Informed Neural Network. """
|
||||
|
||||
import torch
|
||||
|
||||
from .pinn_interface import PINNInterface
|
||||
from ..solver import SingleSolverInterface
|
||||
from ...problem import InverseProblem
|
||||
|
||||
|
||||
class PINN(PINNInterface, SingleSolverInterface):
|
||||
r"""
|
||||
Physics Informed Neural Network (PINN) solver class.
|
||||
This class implements Physics Informed Neural
|
||||
Network solver, using a user specified ``model`` to solve a specific
|
||||
``problem``. It can be used for solving both forward and inverse problems.
|
||||
|
||||
The Physics Informed Network aims to find
|
||||
the solution :math:`\mathbf{u}:\Omega\rightarrow\mathbb{R}^m`
|
||||
of the differential problem:
|
||||
|
||||
.. math::
|
||||
|
||||
\begin{cases}
|
||||
\mathcal{A}[\mathbf{u}](\mathbf{x})=0\quad,\mathbf{x}\in\Omega\\
|
||||
\mathcal{B}[\mathbf{u}](\mathbf{x})=0\quad,
|
||||
\mathbf{x}\in\partial\Omega
|
||||
\end{cases}
|
||||
|
||||
minimizing the loss function
|
||||
|
||||
.. math::
|
||||
\mathcal{L}_{\rm{problem}} = \frac{1}{N}\sum_{i=1}^N
|
||||
\mathcal{L}(\mathcal{A}[\mathbf{u}](\mathbf{x}_i)) +
|
||||
\frac{1}{N}\sum_{i=1}^N
|
||||
\mathcal{L}(\mathcal{B}[\mathbf{u}](\mathbf{x}_i))
|
||||
|
||||
where :math:`\mathcal{L}` is a specific loss function,
|
||||
default Mean Square Error:
|
||||
|
||||
.. math::
|
||||
\mathcal{L}(v) = \| v \|^2_2.
|
||||
|
||||
.. seealso::
|
||||
|
||||
**Original reference**: Karniadakis, G. E., Kevrekidis, I. G., Lu, L.,
|
||||
Perdikaris, P., Wang, S., & Yang, L. (2021).
|
||||
Physics-informed machine learning. Nature Reviews Physics, 3, 422-440.
|
||||
DOI: `10.1038 <https://doi.org/10.1038/s42254-021-00314-5>`_.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
problem,
|
||||
model,
|
||||
optimizer=None,
|
||||
scheduler=None,
|
||||
weighting=None,
|
||||
loss=None):
|
||||
"""
|
||||
:param torch.nn.Module model: The neural network model to use.
|
||||
:param AbstractProblem problem: The formulation of the problem.
|
||||
:param torch.optim.Optimizer optimizer: The neural network optimizer to
|
||||
use; default `None`.
|
||||
:param torch.optim.LRScheduler scheduler: Learning rate scheduler;
|
||||
default `None`.
|
||||
:param WeightingInterface weighting: The weighting schema to use;
|
||||
default `None`.
|
||||
:param torch.nn.Module loss: The loss function to be minimized;
|
||||
default `None`.
|
||||
"""
|
||||
super().__init__(model=model,
|
||||
problem=problem,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
weighting=weighting,
|
||||
loss=loss)
|
||||
|
||||
def loss_phys(self, samples, equation):
|
||||
"""
|
||||
Computes the physics loss for the PINN solver based on given
|
||||
samples and equation.
|
||||
|
||||
:param LabelTensor samples: The samples to evaluate the physics loss.
|
||||
:param EquationInterface equation: The governing equation
|
||||
representing the physics.
|
||||
:return: The physics loss calculated based on given
|
||||
samples and equation.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
residual = self.compute_residual(samples=samples, equation=equation)
|
||||
loss_value = self.loss(
|
||||
torch.zeros_like(residual, requires_grad=True), residual
|
||||
)
|
||||
return loss_value
|
||||
|
||||
def configure_optimizers(self):
|
||||
"""
|
||||
Optimizer configuration for the PINN solver.
|
||||
|
||||
:return: The optimizers and the schedulers
|
||||
:rtype: tuple(list, list)
|
||||
"""
|
||||
# If the problem is an InverseProblem, add the unknown parameters
|
||||
# to the parameters to be optimized.
|
||||
self.optimizer.hook(self.model.parameters())
|
||||
if isinstance(self.problem, InverseProblem):
|
||||
self.optimizer.instance.add_param_group(
|
||||
{
|
||||
"params": [
|
||||
self._params[var]
|
||||
for var in self.problem.unknown_variables
|
||||
]
|
||||
}
|
||||
)
|
||||
self.scheduler.hook(self.optimizer)
|
||||
return (
|
||||
[self.optimizer.instance],
|
||||
[self.scheduler.instance]
|
||||
)
|
||||
Reference in New Issue
Block a user