Renaming
* solvers -> solver * adaptive_functions -> adaptive_function * callbacks -> callback * operators -> operator * pinns -> physics_informed_solver * layers -> block
This commit is contained in:
committed by
Nicola Demo
parent
810d215ca0
commit
df673cad4e
@@ -1,19 +1,19 @@
|
||||
import torch
|
||||
import pytest
|
||||
|
||||
from pina.adaptive_functions import (AdaptiveReLU, AdaptiveSigmoid, AdaptiveTanh,
|
||||
from pina.adaptive_function import (AdaptiveReLU, AdaptiveSigmoid, AdaptiveTanh,
|
||||
AdaptiveSiLU, AdaptiveMish, AdaptiveELU,
|
||||
AdaptiveCELU, AdaptiveGELU, AdaptiveSoftmin,
|
||||
AdaptiveSoftmax, AdaptiveSIREN, AdaptiveExp)
|
||||
|
||||
|
||||
adaptive_functions = (AdaptiveReLU, AdaptiveSigmoid, AdaptiveTanh,
|
||||
adaptive_function = (AdaptiveReLU, AdaptiveSigmoid, AdaptiveTanh,
|
||||
AdaptiveSiLU, AdaptiveMish, AdaptiveELU,
|
||||
AdaptiveCELU, AdaptiveGELU, AdaptiveSoftmin,
|
||||
AdaptiveSoftmax, AdaptiveSIREN, AdaptiveExp)
|
||||
x = torch.rand(10, requires_grad=True)
|
||||
|
||||
@pytest.mark.parametrize("Func", adaptive_functions)
|
||||
@pytest.mark.parametrize("Func", adaptive_function)
|
||||
def test_constructor(Func):
|
||||
if Func.__name__ == 'AdaptiveExp':
|
||||
# simple
|
||||
@@ -50,12 +50,12 @@ def test_constructor(Func):
|
||||
Func(alpha='s')
|
||||
Func(alpha=1)
|
||||
|
||||
@pytest.mark.parametrize("Func", adaptive_functions)
|
||||
@pytest.mark.parametrize("Func", adaptive_function)
|
||||
def test_forward(Func):
|
||||
af = Func()
|
||||
af(x)
|
||||
|
||||
@pytest.mark.parametrize("Func", adaptive_functions)
|
||||
@pytest.mark.parametrize("Func", adaptive_function)
|
||||
def test_backward(Func):
|
||||
af = Func()
|
||||
y = af(x)
|
||||
@@ -1,4 +1,4 @@
|
||||
from pina.model.layers import ContinuousConvBlock
|
||||
from pina.model.block import ContinuousConvBlock
|
||||
import torch
|
||||
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
import torch
|
||||
import pytest
|
||||
|
||||
from pina.model.layers import PeriodicBoundaryEmbedding, FourierFeatureEmbedding
|
||||
from pina.model.block import PeriodicBoundaryEmbedding, FourierFeatureEmbedding
|
||||
|
||||
# test tolerance
|
||||
tol = 1e-6
|
||||
@@ -1,4 +1,4 @@
|
||||
from pina.model.layers import FourierBlock1D, FourierBlock2D, FourierBlock3D
|
||||
from pina.model.block import FourierBlock1D, FourierBlock2D, FourierBlock3D
|
||||
import torch
|
||||
|
||||
input_numb_fields = 3
|
||||
@@ -1,7 +1,7 @@
|
||||
import torch
|
||||
import pytest
|
||||
|
||||
from pina.model.layers import LowRankBlock
|
||||
from pina.model.block import LowRankBlock
|
||||
from pina import LabelTensor
|
||||
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
import torch
|
||||
import pytest
|
||||
from pina.model.layers import OrthogonalBlock
|
||||
from pina.model.block import OrthogonalBlock
|
||||
|
||||
torch.manual_seed(111)
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
import torch
|
||||
import pytest
|
||||
|
||||
from pina.model.layers.pod import PODBlock
|
||||
from pina.model.block.pod import PODBlock
|
||||
|
||||
x = torch.linspace(-1, 1, 100)
|
||||
toy_snapshots = torch.vstack([torch.exp(-x**2)*c for c in torch.linspace(0, 1, 10)])
|
||||
@@ -2,7 +2,7 @@ import torch
|
||||
import pytest
|
||||
import math
|
||||
|
||||
from pina.model.layers.rbf_layer import RBFBlock
|
||||
from pina.model.block.rbf_layer import RBFBlock
|
||||
|
||||
x = torch.linspace(-1, 1, 100)
|
||||
toy_params = torch.linspace(0, 1, 10).unsqueeze(1)
|
||||
@@ -1,4 +1,4 @@
|
||||
from pina.model.layers import ResidualBlock, EnhancedLinear
|
||||
from pina.model.block import ResidualBlock, EnhancedLinear
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
from pina.model.layers import SpectralConvBlock1D, SpectralConvBlock2D, SpectralConvBlock3D
|
||||
from pina.model.block import SpectralConvBlock1D, SpectralConvBlock2D, SpectralConvBlock3D
|
||||
import torch
|
||||
|
||||
input_numb_fields = 3
|
||||
@@ -1,8 +1,8 @@
|
||||
from pina.solvers import PINN
|
||||
from pina.solver import PINN
|
||||
from pina.trainer import Trainer
|
||||
from pina.model import FeedForward
|
||||
from pina.problem.zoo import Poisson2DSquareProblem as Poisson
|
||||
from pina.callbacks import R3Refinement
|
||||
from pina.callback import R3Refinement
|
||||
|
||||
|
||||
# make the problem
|
||||
@@ -25,7 +25,7 @@ solver = PINN(problem=poisson_problem, model=model)
|
||||
# def test_r3refinment_routine():
|
||||
# # make the trainer
|
||||
# trainer = Trainer(solver=solver,
|
||||
# callbacks=[R3Refinement(sample_every=1)],
|
||||
# callback=[R3Refinement(sample_every=1)],
|
||||
# accelerator='cpu',
|
||||
# max_epochs=5)
|
||||
# trainer.train()
|
||||
@@ -35,7 +35,7 @@ solver = PINN(problem=poisson_problem, model=model)
|
||||
# len(poisson_problem.output_variables))
|
||||
# solver = PINN(problem=poisson_problem, model=model)
|
||||
# trainer = Trainer(solver=solver,
|
||||
# callbacks=[R3Refinement(sample_every=1)],
|
||||
# callback=[R3Refinement(sample_every=1)],
|
||||
# accelerator='cpu',
|
||||
# max_epochs=5)
|
||||
# before_n_points = {loc : len(pts) for loc, pts in trainer.solver.problem.input_pts.items()}
|
||||
@@ -1,7 +1,7 @@
|
||||
from pina.solvers import PINN
|
||||
from pina.solver import PINN
|
||||
from pina.trainer import Trainer
|
||||
from pina.model import FeedForward
|
||||
from pina.callbacks import MetricTracker
|
||||
from pina.callback import MetricTracker
|
||||
from pina.problem.zoo import Poisson2DSquareProblem as Poisson
|
||||
|
||||
|
||||
@@ -24,14 +24,14 @@ def test_metric_tracker_constructor():
|
||||
# def test_metric_tracker_routine(): #TODO revert
|
||||
# # make the trainer
|
||||
# trainer = Trainer(solver=solver,
|
||||
# callbacks=[
|
||||
# callback=[
|
||||
# MetricTracker()
|
||||
# ],
|
||||
# accelerator='cpu',
|
||||
# max_epochs=5)
|
||||
# trainer.train()
|
||||
# # get the tracked metrics
|
||||
# metrics = trainer.callbacks[0].metrics
|
||||
# metrics = trainer.callback[0].metrics
|
||||
# # assert the logged metrics are correct
|
||||
# logged_metrics = sorted(list(metrics.keys()))
|
||||
# assert logged_metrics == ['train_loss_epoch', 'train_loss_step', 'val_loss']
|
||||
@@ -1,8 +1,8 @@
|
||||
from pina.callbacks import SwitchOptimizer
|
||||
from pina.callback import SwitchOptimizer
|
||||
import torch
|
||||
import pytest
|
||||
|
||||
from pina.solvers import PINN
|
||||
from pina.solver import PINN
|
||||
from pina.trainer import Trainer
|
||||
from pina.model import FeedForward
|
||||
from pina.problem.zoo import Poisson2DSquareProblem as Poisson
|
||||
@@ -31,7 +31,7 @@ def test_switch_optimizer_constructor():
|
||||
# # make the trainer
|
||||
# switch_opt_callback = SwitchOptimizer(lbfgs_optimizer, epoch_switch=3)
|
||||
# trainer = Trainer(solver=solver,
|
||||
# callbacks=[switch_opt_callback],
|
||||
# callback=[switch_opt_callback],
|
||||
# accelerator='cpu',
|
||||
# max_epochs=5)
|
||||
# trainer.train()
|
||||
@@ -1,7 +1,7 @@
|
||||
from pina.solvers import PINN
|
||||
from pina.solver import PINN
|
||||
from pina.trainer import Trainer
|
||||
from pina.model import FeedForward
|
||||
from pina.callbacks.processing_callbacks import PINAProgressBar
|
||||
from pina.callback.processing_callback import PINAProgressBar
|
||||
from pina.problem.zoo import Poisson2DSquareProblem as Poisson
|
||||
|
||||
|
||||
@@ -24,7 +24,7 @@ from pina.problem.zoo import Poisson2DSquareProblem as Poisson
|
||||
# def test_progress_bar_routine():
|
||||
# # make the trainer
|
||||
# trainer = Trainer(solver=solver,
|
||||
# callbacks=[
|
||||
# callback=[
|
||||
# PINAProgressBar(['mean', 'laplace_D'])
|
||||
# ],
|
||||
# accelerator='cpu',
|
||||
@@ -7,7 +7,7 @@ from pina.problem import AbstractProblem, SpatialProblem
|
||||
from pina.domain import CartesianDomain
|
||||
from pina.equation.equation import Equation
|
||||
from pina.equation.equation_factory import FixedValue
|
||||
from pina.operators import laplacian
|
||||
from pina.operator import laplacian
|
||||
from pina.collector import Collector
|
||||
|
||||
|
||||
|
||||
@@ -6,7 +6,7 @@ from pina.problem.zoo import SupervisedProblem
|
||||
from pina.graph import RadiusGraph
|
||||
from pina.data.data_module import DummyDataloader
|
||||
from pina import Trainer
|
||||
from pina.solvers import SupervisedSolver
|
||||
from pina.solver import SupervisedSolver
|
||||
from torch_geometric.data import Batch
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
from pina.equation import Equation
|
||||
from pina.operators import grad, laplacian
|
||||
from pina.operator import grad, laplacian
|
||||
from pina import LabelTensor
|
||||
import torch
|
||||
import pytest
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
from pina.equation import SystemEquation
|
||||
from pina.operators import grad, laplacian
|
||||
from pina.operator import grad, laplacian
|
||||
from pina import LabelTensor
|
||||
import torch
|
||||
import pytest
|
||||
|
||||
@@ -2,7 +2,7 @@ import torch
|
||||
import pytest
|
||||
|
||||
from pina import LabelTensor
|
||||
from pina.operators import grad, div, laplacian
|
||||
from pina.operator import grad, div, laplacian
|
||||
|
||||
|
||||
def func_vector(x):
|
||||
@@ -3,7 +3,7 @@ import pytest
|
||||
|
||||
from pina import LabelTensor, Condition
|
||||
from pina.problem import SpatialProblem
|
||||
from pina.solvers import CausalPINN
|
||||
from pina.solver import CausalPINN
|
||||
from pina.trainer import Trainer
|
||||
from pina.model import FeedForward
|
||||
from pina.problem.zoo import (
|
||||
@@ -118,7 +118,7 @@ def test_solver_test(problem, batch_size, compile):
|
||||
|
||||
@pytest.mark.parametrize("problem", [problem, inverse_problem])
|
||||
def test_train_load_restore(problem):
|
||||
dir = "tests/test_solvers/tmp"
|
||||
dir = "tests/test_solver/tmp"
|
||||
problem = problem
|
||||
solver = CausalPINN(model=model, problem=problem)
|
||||
trainer = Trainer(solver=solver,
|
||||
@@ -153,4 +153,4 @@ def test_train_load_restore(problem):
|
||||
|
||||
# rm directories
|
||||
import shutil
|
||||
shutil.rmtree('tests/test_solvers/tmp')
|
||||
shutil.rmtree('tests/test_solver/tmp')
|
||||
@@ -2,7 +2,7 @@ import torch
|
||||
import pytest
|
||||
|
||||
from pina import LabelTensor, Condition
|
||||
from pina.solvers import CompetitivePINN as CompPINN
|
||||
from pina.solver import CompetitivePINN as CompPINN
|
||||
from pina.trainer import Trainer
|
||||
from pina.model import FeedForward
|
||||
from pina.problem.zoo import (
|
||||
@@ -107,7 +107,7 @@ def test_solver_test(problem, batch_size, compile):
|
||||
|
||||
@pytest.mark.parametrize("problem", [problem, inverse_problem])
|
||||
def test_train_load_restore(problem):
|
||||
dir = "tests/test_solvers/tmp"
|
||||
dir = "tests/test_solver/tmp"
|
||||
problem = problem
|
||||
solver = CompPINN(problem=problem, model=model)
|
||||
trainer = Trainer(solver=solver,
|
||||
@@ -142,4 +142,4 @@ def test_train_load_restore(problem):
|
||||
|
||||
# rm directories
|
||||
import shutil
|
||||
shutil.rmtree('tests/test_solvers/tmp')
|
||||
shutil.rmtree('tests/test_solver/tmp')
|
||||
@@ -3,7 +3,7 @@ import torch.nn as nn
|
||||
|
||||
import pytest
|
||||
from pina import Condition, LabelTensor
|
||||
from pina.solvers import GAROM
|
||||
from pina.solver import GAROM
|
||||
from pina.condition import InputOutputPointsCondition
|
||||
from pina.problem import AbstractProblem
|
||||
from pina.model import FeedForward
|
||||
@@ -141,7 +141,7 @@ def test_solver_test(batch_size, compile):
|
||||
|
||||
|
||||
def test_train_load_restore():
|
||||
dir = "tests/test_solvers/tmp/"
|
||||
dir = "tests/test_solver/tmp/"
|
||||
problem = TensorProblem()
|
||||
solver = GAROM(problem=TensorProblem(),
|
||||
generator=Generator(),
|
||||
@@ -174,4 +174,4 @@ def test_train_load_restore():
|
||||
|
||||
# rm directories
|
||||
import shutil
|
||||
shutil.rmtree('tests/test_solvers/tmp')
|
||||
shutil.rmtree('tests/test_solver/tmp')
|
||||
@@ -3,7 +3,7 @@ import torch
|
||||
|
||||
from pina import LabelTensor, Condition
|
||||
from pina.problem import TimeDependentProblem
|
||||
from pina.solvers import GradientPINN
|
||||
from pina.solver import GradientPINN
|
||||
from pina.model import FeedForward
|
||||
from pina.trainer import Trainer
|
||||
from pina.problem.zoo import (
|
||||
@@ -117,7 +117,7 @@ def test_solver_test(problem, batch_size, compile):
|
||||
|
||||
@pytest.mark.parametrize("problem", [problem, inverse_problem])
|
||||
def test_train_load_restore(problem):
|
||||
dir = "tests/test_solvers/tmp"
|
||||
dir = "tests/test_solver/tmp"
|
||||
problem = problem
|
||||
solver = GradientPINN(model=model, problem=problem)
|
||||
trainer = Trainer(solver=solver,
|
||||
@@ -152,4 +152,4 @@ def test_train_load_restore(problem):
|
||||
|
||||
# rm directories
|
||||
import shutil
|
||||
shutil.rmtree('tests/test_solvers/tmp')
|
||||
shutil.rmtree('tests/test_solver/tmp')
|
||||
@@ -4,7 +4,7 @@ import torch
|
||||
from pina import LabelTensor, Condition
|
||||
from pina.model import FeedForward
|
||||
from pina.trainer import Trainer
|
||||
from pina.solvers import PINN
|
||||
from pina.solver import PINN
|
||||
from pina.condition import (
|
||||
InputOutputPointsCondition,
|
||||
InputPointsEquationCondition,
|
||||
@@ -98,7 +98,7 @@ def test_solver_test(problem, batch_size, compile):
|
||||
|
||||
@pytest.mark.parametrize("problem", [problem, inverse_problem])
|
||||
def test_train_load_restore(problem):
|
||||
dir = "tests/test_solvers/tmp"
|
||||
dir = "tests/test_solver/tmp"
|
||||
problem = problem
|
||||
solver = PINN(model=model, problem=problem)
|
||||
trainer = Trainer(solver=solver,
|
||||
@@ -131,4 +131,4 @@ def test_train_load_restore(problem):
|
||||
|
||||
# rm directories
|
||||
import shutil
|
||||
shutil.rmtree('tests/test_solvers/tmp')
|
||||
shutil.rmtree('tests/test_solver/tmp')
|
||||
@@ -4,7 +4,7 @@ import torch
|
||||
from pina import LabelTensor, Condition
|
||||
from pina.model import FeedForward
|
||||
from pina.trainer import Trainer
|
||||
from pina.solvers import RBAPINN
|
||||
from pina.solver import RBAPINN
|
||||
from pina.condition import (
|
||||
InputOutputPointsCondition,
|
||||
InputPointsEquationCondition,
|
||||
@@ -119,7 +119,7 @@ def test_solver_test(problem, compile):
|
||||
|
||||
@pytest.mark.parametrize("problem", [problem, inverse_problem])
|
||||
def test_train_load_restore(problem):
|
||||
dir = "tests/test_solvers/tmp"
|
||||
dir = "tests/test_solver/tmp"
|
||||
problem = problem
|
||||
solver = RBAPINN(model=model, problem=problem)
|
||||
trainer = Trainer(solver=solver,
|
||||
@@ -154,4 +154,4 @@ def test_train_load_restore(problem):
|
||||
|
||||
# rm directories
|
||||
import shutil
|
||||
shutil.rmtree('tests/test_solvers/tmp')
|
||||
shutil.rmtree('tests/test_solver/tmp')
|
||||
@@ -4,7 +4,7 @@ import pytest
|
||||
from pina import Condition, LabelTensor
|
||||
from pina.problem import AbstractProblem
|
||||
from pina.condition import InputOutputPointsCondition
|
||||
from pina.solvers import ReducedOrderModelSolver
|
||||
from pina.solver import ReducedOrderModelSolver
|
||||
from pina.trainer import Trainer
|
||||
from pina.model import FeedForward
|
||||
from pina.problem.zoo import Poisson2DSquareProblem
|
||||
@@ -149,7 +149,7 @@ def test_solver_test(use_lt, compile):
|
||||
|
||||
|
||||
def test_train_load_restore():
|
||||
dir = "tests/test_solvers/tmp/"
|
||||
dir = "tests/test_solver/tmp/"
|
||||
problem = LabelTensorProblem()
|
||||
solver = ReducedOrderModelSolver(problem=problem,
|
||||
|
||||
@@ -184,4 +184,4 @@ def test_train_load_restore():
|
||||
solver.forward(test_pts))
|
||||
# rm directories
|
||||
import shutil
|
||||
shutil.rmtree('tests/test_solvers/tmp')
|
||||
shutil.rmtree('tests/test_solver/tmp')
|
||||
@@ -2,7 +2,7 @@ import torch
|
||||
import pytest
|
||||
|
||||
from pina import LabelTensor, Condition
|
||||
from pina.solvers import SelfAdaptivePINN as SAPINN
|
||||
from pina.solver import SelfAdaptivePINN as SAPINN
|
||||
from pina.trainer import Trainer
|
||||
from pina.model import FeedForward
|
||||
from pina.problem.zoo import (
|
||||
@@ -122,7 +122,7 @@ def test_solver_test(problem, compile):
|
||||
|
||||
@pytest.mark.parametrize("problem", [problem, inverse_problem])
|
||||
def test_train_load_restore(problem):
|
||||
dir = "tests/test_solvers/tmp"
|
||||
dir = "tests/test_solver/tmp"
|
||||
problem = problem
|
||||
solver = SAPINN(model=model, problem=problem)
|
||||
trainer = Trainer(solver=solver,
|
||||
@@ -156,4 +156,4 @@ def test_train_load_restore(problem):
|
||||
|
||||
# rm directories
|
||||
import shutil
|
||||
shutil.rmtree('tests/test_solvers/tmp')
|
||||
shutil.rmtree('tests/test_solver/tmp')
|
||||
@@ -3,7 +3,7 @@ import pytest
|
||||
from pina import Condition, LabelTensor
|
||||
from pina.condition import InputOutputPointsCondition
|
||||
from pina.problem import AbstractProblem
|
||||
from pina.solvers import SupervisedSolver
|
||||
from pina.solver import SupervisedSolver
|
||||
from pina.model import FeedForward
|
||||
from pina.trainer import Trainer
|
||||
from torch._dynamo.eval_frame import OptimizedModule
|
||||
@@ -97,7 +97,7 @@ def test_solver_test(use_lt, compile):
|
||||
|
||||
|
||||
def test_train_load_restore():
|
||||
dir = "tests/test_solvers/tmp/"
|
||||
dir = "tests/test_solver/tmp/"
|
||||
problem = LabelTensorProblem()
|
||||
solver = SupervisedSolver(problem=problem, model=model)
|
||||
trainer = Trainer(solver=solver,
|
||||
@@ -130,4 +130,4 @@ def test_train_load_restore():
|
||||
|
||||
# rm directories
|
||||
import shutil
|
||||
shutil.rmtree('tests/test_solvers/tmp')
|
||||
shutil.rmtree('tests/test_solver/tmp')
|
||||
@@ -2,7 +2,7 @@ import pytest
|
||||
import torch
|
||||
|
||||
from pina import Trainer
|
||||
from pina.solvers import PINN
|
||||
from pina.solver import PINN
|
||||
from pina.model import FeedForward
|
||||
from pina.problem.zoo import Poisson2DSquareProblem
|
||||
from pina.loss import ScalarWeighting
|
||||
|
||||
Reference in New Issue
Block a user