Renaming
* solvers -> solver * adaptive_functions -> adaptive_function * callbacks -> callback * operators -> operator * pinns -> physics_informed_solver * layers -> block
This commit is contained in:
committed by
Nicola Demo
parent
810d215ca0
commit
df673cad4e
62
tests/test_adaptive_function.py
Normal file
62
tests/test_adaptive_function.py
Normal file
@@ -0,0 +1,62 @@
|
||||
import torch
|
||||
import pytest
|
||||
|
||||
from pina.adaptive_function import (AdaptiveReLU, AdaptiveSigmoid, AdaptiveTanh,
|
||||
AdaptiveSiLU, AdaptiveMish, AdaptiveELU,
|
||||
AdaptiveCELU, AdaptiveGELU, AdaptiveSoftmin,
|
||||
AdaptiveSoftmax, AdaptiveSIREN, AdaptiveExp)
|
||||
|
||||
|
||||
adaptive_function = (AdaptiveReLU, AdaptiveSigmoid, AdaptiveTanh,
|
||||
AdaptiveSiLU, AdaptiveMish, AdaptiveELU,
|
||||
AdaptiveCELU, AdaptiveGELU, AdaptiveSoftmin,
|
||||
AdaptiveSoftmax, AdaptiveSIREN, AdaptiveExp)
|
||||
x = torch.rand(10, requires_grad=True)
|
||||
|
||||
@pytest.mark.parametrize("Func", adaptive_function)
|
||||
def test_constructor(Func):
|
||||
if Func.__name__ == 'AdaptiveExp':
|
||||
# simple
|
||||
Func()
|
||||
# setting values
|
||||
af = Func(alpha=1., beta=2.)
|
||||
assert af.alpha.requires_grad
|
||||
assert af.beta.requires_grad
|
||||
assert af.alpha == 1.
|
||||
assert af.beta == 2.
|
||||
else:
|
||||
# simple
|
||||
Func()
|
||||
# setting values
|
||||
af = Func(alpha=1., beta=2., gamma=3.)
|
||||
assert af.alpha.requires_grad
|
||||
assert af.beta.requires_grad
|
||||
assert af.gamma.requires_grad
|
||||
assert af.alpha == 1.
|
||||
assert af.beta == 2.
|
||||
assert af.gamma == 3.
|
||||
|
||||
# fixed variables
|
||||
af = Func(alpha=1., beta=2., fixed=['alpha'])
|
||||
assert af.alpha.requires_grad is False
|
||||
assert af.beta.requires_grad
|
||||
assert af.alpha == 1.
|
||||
assert af.beta == 2.
|
||||
|
||||
with pytest.raises(TypeError):
|
||||
Func(alpha=1., beta=2., fixed=['delta'])
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
Func(alpha='s')
|
||||
Func(alpha=1)
|
||||
|
||||
@pytest.mark.parametrize("Func", adaptive_function)
|
||||
def test_forward(Func):
|
||||
af = Func()
|
||||
af(x)
|
||||
|
||||
@pytest.mark.parametrize("Func", adaptive_function)
|
||||
def test_backward(Func):
|
||||
af = Func()
|
||||
y = af(x)
|
||||
y.mean().backward()
|
||||
Reference in New Issue
Block a user