Renaming
* solvers -> solver * adaptive_functions -> adaptive_function * callbacks -> callback * operators -> operator * pinns -> physics_informed_solver * layers -> block
This commit is contained in:
committed by
Nicola Demo
parent
810d215ca0
commit
df673cad4e
89
tests/test_blocks/test_pod.py
Normal file
89
tests/test_blocks/test_pod.py
Normal file
@@ -0,0 +1,89 @@
|
||||
import torch
|
||||
import pytest
|
||||
|
||||
from pina.model.block.pod import PODBlock
|
||||
|
||||
x = torch.linspace(-1, 1, 100)
|
||||
toy_snapshots = torch.vstack([torch.exp(-x**2)*c for c in torch.linspace(0, 1, 10)])
|
||||
|
||||
def test_constructor():
|
||||
pod = PODBlock(2)
|
||||
pod = PODBlock(2, True)
|
||||
pod = PODBlock(2, False)
|
||||
with pytest.raises(TypeError):
|
||||
pod = PODBlock()
|
||||
|
||||
|
||||
@pytest.mark.parametrize("rank", [1, 2, 10])
|
||||
def test_fit(rank, scale):
|
||||
pod = PODBlock(rank, scale)
|
||||
assert pod._basis == None
|
||||
assert pod.basis == None
|
||||
assert pod._scaler == None
|
||||
assert pod.rank == rank
|
||||
assert pod.scale_coefficients == scale
|
||||
|
||||
@pytest.mark.parametrize("scale", [True, False])
|
||||
@pytest.mark.parametrize("rank", [1, 2, 10])
|
||||
@pytest.mark.parametrize("randomized", [True, False])
|
||||
def test_fit(rank, scale, randomized):
|
||||
pod = PODBlock(rank, scale)
|
||||
pod.fit(toy_snapshots, randomized)
|
||||
n_snap = toy_snapshots.shape[0]
|
||||
dof = toy_snapshots.shape[1]
|
||||
assert pod.basis.shape == (rank, dof)
|
||||
assert pod._basis.shape == (n_snap, dof)
|
||||
if scale is True:
|
||||
assert pod._scaler['mean'].shape == (n_snap,)
|
||||
assert pod._scaler['std'].shape == (n_snap,)
|
||||
assert pod.scaler['mean'].shape == (rank,)
|
||||
assert pod.scaler['std'].shape == (rank,)
|
||||
assert pod.scaler['mean'].shape[0] == pod.basis.shape[0]
|
||||
else:
|
||||
assert pod._scaler == None
|
||||
assert pod.scaler == None
|
||||
|
||||
def test_forward():
|
||||
pod = PODBlock(1)
|
||||
pod.fit(toy_snapshots)
|
||||
c = pod(toy_snapshots)
|
||||
assert c.shape[0] == toy_snapshots.shape[0]
|
||||
assert c.shape[1] == pod.rank
|
||||
torch.testing.assert_close(c.mean(dim=0), torch.zeros(pod.rank))
|
||||
torch.testing.assert_close(c.std(dim=0), torch.ones(pod.rank))
|
||||
|
||||
c = pod(toy_snapshots[0])
|
||||
assert c.shape[1] == pod.rank
|
||||
assert c.shape[0] == 1
|
||||
|
||||
pod = PODBlock(2, False)
|
||||
pod.fit(toy_snapshots)
|
||||
c = pod(toy_snapshots)
|
||||
torch.testing.assert_close(c, (pod.basis @ toy_snapshots.T).T)
|
||||
with pytest.raises(AssertionError):
|
||||
torch.testing.assert_close(c.mean(dim=0), torch.zeros(pod.rank))
|
||||
torch.testing.assert_close(c.std(dim=0), torch.ones(pod.rank))
|
||||
|
||||
@pytest.mark.parametrize("scale", [True, False])
|
||||
@pytest.mark.parametrize("rank", [1, 2, 10])
|
||||
@pytest.mark.parametrize("randomized", [True, False])
|
||||
def test_expand(rank, scale, randomized):
|
||||
pod = PODBlock(rank, scale)
|
||||
pod.fit(toy_snapshots, randomized)
|
||||
c = pod(toy_snapshots)
|
||||
torch.testing.assert_close(pod.expand(c), toy_snapshots)
|
||||
torch.testing.assert_close(pod.expand(c[0]), toy_snapshots[0].unsqueeze(0))
|
||||
|
||||
@pytest.mark.parametrize("scale", [True, False])
|
||||
@pytest.mark.parametrize("rank", [1, 2, 10])
|
||||
@pytest.mark.parametrize("randomized", [True, False])
|
||||
def test_reduce_expand(rank, scale, randomized):
|
||||
pod = PODBlock(rank, scale)
|
||||
pod.fit(toy_snapshots, randomized)
|
||||
torch.testing.assert_close(
|
||||
pod.expand(pod.reduce(toy_snapshots)),
|
||||
toy_snapshots)
|
||||
torch.testing.assert_close(
|
||||
pod.expand(pod.reduce(toy_snapshots[0])),
|
||||
toy_snapshots[0].unsqueeze(0))
|
||||
# torch.testing.assert_close(pod.expand(pod.reduce(c[0])), c[0])
|
||||
Reference in New Issue
Block a user