Renaming
* solvers -> solver * adaptive_functions -> adaptive_function * callbacks -> callback * operators -> operator * pinns -> physics_informed_solver * layers -> block
This commit is contained in:
committed by
Nicola Demo
parent
810d215ca0
commit
df673cad4e
102
tests/test_blocks/test_residual.py
Normal file
102
tests/test_blocks/test_residual.py
Normal file
@@ -0,0 +1,102 @@
|
||||
from pina.model.block import ResidualBlock, EnhancedLinear
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
def test_constructor_residual_block():
|
||||
|
||||
res_block = ResidualBlock(input_dim=10, output_dim=3, hidden_dim=4)
|
||||
|
||||
res_block = ResidualBlock(input_dim=10,
|
||||
output_dim=3,
|
||||
hidden_dim=4,
|
||||
spectral_norm=True)
|
||||
|
||||
|
||||
def test_forward_residual_block():
|
||||
|
||||
res_block = ResidualBlock(input_dim=10, output_dim=3, hidden_dim=4)
|
||||
|
||||
x = torch.rand(size=(80, 10))
|
||||
y = res_block(x)
|
||||
assert y.shape[1] == 3
|
||||
assert y.shape[0] == x.shape[0]
|
||||
|
||||
def test_backward_residual_block():
|
||||
|
||||
res_block = ResidualBlock(input_dim=10, output_dim=3, hidden_dim=4)
|
||||
|
||||
x = torch.rand(size=(80, 10))
|
||||
x.requires_grad = True
|
||||
y = res_block(x)
|
||||
l = torch.mean(y)
|
||||
l.backward()
|
||||
assert x._grad.shape == torch.Size([80,10])
|
||||
|
||||
def test_constructor_no_activation_no_dropout():
|
||||
linear_layer = nn.Linear(10, 20)
|
||||
enhanced_linear = EnhancedLinear(linear_layer)
|
||||
|
||||
assert len(list(enhanced_linear.parameters())) == len(list(linear_layer.parameters()))
|
||||
|
||||
def test_constructor_with_activation_no_dropout():
|
||||
linear_layer = nn.Linear(10, 20)
|
||||
activation = nn.ReLU()
|
||||
enhanced_linear = EnhancedLinear(linear_layer, activation)
|
||||
|
||||
assert len(list(enhanced_linear.parameters())) == len(list(linear_layer.parameters())) + len(list(activation.parameters()))
|
||||
|
||||
def test_constructor_no_activation_with_dropout():
|
||||
linear_layer = nn.Linear(10, 20)
|
||||
dropout_prob = 0.5
|
||||
enhanced_linear = EnhancedLinear(linear_layer, dropout=dropout_prob)
|
||||
|
||||
assert len(list(enhanced_linear.parameters())) == len(list(linear_layer.parameters()))
|
||||
|
||||
def test_constructor_with_activation_with_dropout():
|
||||
linear_layer = nn.Linear(10, 20)
|
||||
activation = nn.ReLU()
|
||||
dropout_prob = 0.5
|
||||
enhanced_linear = EnhancedLinear(linear_layer, activation, dropout_prob)
|
||||
|
||||
assert len(list(enhanced_linear.parameters())) == len(list(linear_layer.parameters())) + len(list(activation.parameters()))
|
||||
|
||||
def test_forward_enhanced_linear_no_dropout():
|
||||
|
||||
enhanced_linear = EnhancedLinear(nn.Linear(10, 3))
|
||||
|
||||
x = torch.rand(size=(80, 10))
|
||||
y = enhanced_linear(x)
|
||||
assert y.shape[1] == 3
|
||||
assert y.shape[0] == x.shape[0]
|
||||
|
||||
def test_backward_enhanced_linear_no_dropout():
|
||||
|
||||
enhanced_linear = EnhancedLinear(nn.Linear(10, 3))
|
||||
|
||||
x = torch.rand(size=(80, 10))
|
||||
x.requires_grad = True
|
||||
y = enhanced_linear(x)
|
||||
l = torch.mean(y)
|
||||
l.backward()
|
||||
assert x._grad.shape == torch.Size([80, 10])
|
||||
|
||||
def test_forward_enhanced_linear_dropout():
|
||||
|
||||
enhanced_linear = EnhancedLinear(nn.Linear(10, 3), dropout=0.5)
|
||||
|
||||
x = torch.rand(size=(80, 10))
|
||||
y = enhanced_linear(x)
|
||||
assert y.shape[1] == 3
|
||||
assert y.shape[0] == x.shape[0]
|
||||
|
||||
def test_backward_enhanced_linear_dropout():
|
||||
|
||||
enhanced_linear = EnhancedLinear(nn.Linear(10, 3), dropout=0.5)
|
||||
|
||||
x = torch.rand(size=(80, 10))
|
||||
x.requires_grad = True
|
||||
y = enhanced_linear(x)
|
||||
l = torch.mean(y)
|
||||
l.backward()
|
||||
assert x._grad.shape == torch.Size([80, 10])
|
||||
Reference in New Issue
Block a user