* solvers -> solver
* adaptive_functions -> adaptive_function
* callbacks -> callback
* operators -> operator
* pinns -> physics_informed_solver
* layers -> block
This commit is contained in:
Dario Coscia
2025-02-19 11:35:43 +01:00
committed by Nicola Demo
parent 810d215ca0
commit df673cad4e
90 changed files with 155 additions and 151 deletions

View File

@@ -0,0 +1,44 @@
from pina.solver import PINN
from pina.trainer import Trainer
from pina.model import FeedForward
from pina.problem.zoo import Poisson2DSquareProblem as Poisson
from pina.callback import R3Refinement
# make the problem
poisson_problem = Poisson()
boundaries = ['g1', 'g2', 'g3', 'g4']
n = 10
poisson_problem.discretise_domain(n, 'grid', domains=boundaries)
poisson_problem.discretise_domain(n, 'grid', domains='D')
model = FeedForward(len(poisson_problem.input_variables),
len(poisson_problem.output_variables))
# make the solver
solver = PINN(problem=poisson_problem, model=model)
# def test_r3constructor():
# R3Refinement(sample_every=10)
# def test_r3refinment_routine():
# # make the trainer
# trainer = Trainer(solver=solver,
# callback=[R3Refinement(sample_every=1)],
# accelerator='cpu',
# max_epochs=5)
# trainer.train()
# def test_r3refinment_routine():
# model = FeedForward(len(poisson_problem.input_variables),
# len(poisson_problem.output_variables))
# solver = PINN(problem=poisson_problem, model=model)
# trainer = Trainer(solver=solver,
# callback=[R3Refinement(sample_every=1)],
# accelerator='cpu',
# max_epochs=5)
# before_n_points = {loc : len(pts) for loc, pts in trainer.solver.problem.input_pts.items()}
# trainer.train()
# after_n_points = {loc : len(pts) for loc, pts in trainer.solver.problem.input_pts.items()}
# assert before_n_points == after_n_points

View File

@@ -0,0 +1,39 @@
from pina.solver import PINN
from pina.trainer import Trainer
from pina.model import FeedForward
from pina.callback import MetricTracker
from pina.problem.zoo import Poisson2DSquareProblem as Poisson
# make the problem
poisson_problem = Poisson()
boundaries = ['g1', 'g2', 'g3', 'g4']
n = 10
poisson_problem.discretise_domain(n, 'grid', domains=boundaries)
poisson_problem.discretise_domain(n, 'grid', domains='D')
model = FeedForward(len(poisson_problem.input_variables),
len(poisson_problem.output_variables))
# make the solver
solver = PINN(problem=poisson_problem, model=model)
def test_metric_tracker_constructor():
MetricTracker()
# def test_metric_tracker_routine(): #TODO revert
# # make the trainer
# trainer = Trainer(solver=solver,
# callback=[
# MetricTracker()
# ],
# accelerator='cpu',
# max_epochs=5)
# trainer.train()
# # get the tracked metrics
# metrics = trainer.callback[0].metrics
# # assert the logged metrics are correct
# logged_metrics = sorted(list(metrics.keys()))
# assert logged_metrics == ['train_loss_epoch', 'train_loss_step', 'val_loss']

View File

@@ -0,0 +1,37 @@
from pina.callback import SwitchOptimizer
import torch
import pytest
from pina.solver import PINN
from pina.trainer import Trainer
from pina.model import FeedForward
from pina.problem.zoo import Poisson2DSquareProblem as Poisson
from pina.optim import TorchOptimizer
# make the problem
poisson_problem = Poisson()
boundaries = ['g1', 'g2', 'g3', 'g4']
n = 10
poisson_problem.discretise_domain(n, 'grid', domains=boundaries)
poisson_problem.discretise_domain(n, 'grid', domains='D')
model = FeedForward(len(poisson_problem.input_variables),
len(poisson_problem.output_variables))
# make the solver
solver = PINN(problem=poisson_problem, model=model)
adam_optimizer = TorchOptimizer(torch.optim.Adam, lr=0.01)
lbfgs_optimizer = TorchOptimizer(torch.optim.LBFGS, lr= 0.001)
def test_switch_optimizer_constructor():
SwitchOptimizer(adam_optimizer, epoch_switch=10)
# def test_switch_optimizer_routine(): #TODO revert
# # make the trainer
# switch_opt_callback = SwitchOptimizer(lbfgs_optimizer, epoch_switch=3)
# trainer = Trainer(solver=solver,
# callback=[switch_opt_callback],
# accelerator='cpu',
# max_epochs=5)
# trainer.train()

View File

@@ -0,0 +1,33 @@
from pina.solver import PINN
from pina.trainer import Trainer
from pina.model import FeedForward
from pina.callback.processing_callback import PINAProgressBar
from pina.problem.zoo import Poisson2DSquareProblem as Poisson
# # make the problem
# poisson_problem = Poisson()
# boundaries = ['nil_g1', 'nil_g2', 'nil_g3', 'nil_g4']
# n = 10
# poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
# poisson_problem.discretise_domain(n, 'grid', locations='laplace_D')
# model = FeedForward(len(poisson_problem.input_variables),
# len(poisson_problem.output_variables))
# # make the solver
# solver = PINN(problem=poisson_problem, model=model)
# def test_progress_bar_constructor():
# PINAProgressBar(['mean'])
# def test_progress_bar_routine():
# # make the trainer
# trainer = Trainer(solver=solver,
# callback=[
# PINAProgressBar(['mean', 'laplace_D'])
# ],
# accelerator='cpu',
# max_epochs=5)
# trainer.train()
# # TODO there should be a check that the correct metrics are displayed