Renaming
* solvers -> solver * adaptive_functions -> adaptive_function * callbacks -> callback * operators -> operator * pinns -> physics_informed_solver * layers -> block
This commit is contained in:
committed by
Nicola Demo
parent
810d215ca0
commit
df673cad4e
177
tests/test_solver/test_garom.py
Normal file
177
tests/test_solver/test_garom.py
Normal file
@@ -0,0 +1,177 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
import pytest
|
||||
from pina import Condition, LabelTensor
|
||||
from pina.solver import GAROM
|
||||
from pina.condition import InputOutputPointsCondition
|
||||
from pina.problem import AbstractProblem
|
||||
from pina.model import FeedForward
|
||||
from pina.trainer import Trainer
|
||||
from torch._dynamo.eval_frame import OptimizedModule
|
||||
|
||||
|
||||
class TensorProblem(AbstractProblem):
|
||||
input_variables = ['u_0', 'u_1']
|
||||
output_variables = ['u']
|
||||
conditions = {
|
||||
'data': Condition(
|
||||
output_points=torch.randn(50, 2),
|
||||
input_points=torch.randn(50, 1))
|
||||
}
|
||||
|
||||
|
||||
# simple Generator Network
|
||||
class Generator(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
input_dimension=2,
|
||||
parameters_dimension=1,
|
||||
noise_dimension=2,
|
||||
activation=torch.nn.SiLU):
|
||||
super().__init__()
|
||||
|
||||
self._noise_dimension = noise_dimension
|
||||
self._activation = activation
|
||||
self.model = FeedForward(6*noise_dimension, input_dimension)
|
||||
self.condition = FeedForward(parameters_dimension, 5 * noise_dimension)
|
||||
|
||||
def forward(self, param):
|
||||
# uniform sampling in [-1, 1]
|
||||
z = 2 * torch.rand(size=(param.shape[0], self._noise_dimension),
|
||||
device=param.device,
|
||||
dtype=param.dtype,
|
||||
requires_grad=True) - 1
|
||||
return self.model(torch.cat((z, self.condition(param)), dim=-1))
|
||||
|
||||
# Simple Discriminator Network
|
||||
|
||||
|
||||
class Discriminator(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
input_dimension=2,
|
||||
parameter_dimension=1,
|
||||
hidden_dimension=2,
|
||||
activation=torch.nn.ReLU):
|
||||
super().__init__()
|
||||
|
||||
self._activation = activation
|
||||
self.encoding = FeedForward(input_dimension, hidden_dimension)
|
||||
self.decoding = FeedForward(2*hidden_dimension, input_dimension)
|
||||
self.condition = FeedForward(parameter_dimension, hidden_dimension)
|
||||
|
||||
def forward(self, data):
|
||||
x, condition = data
|
||||
encoding = self.encoding(x)
|
||||
conditioning = torch.cat((encoding, self.condition(condition)), dim=-1)
|
||||
decoding = self.decoding(conditioning)
|
||||
return decoding
|
||||
|
||||
|
||||
def test_constructor():
|
||||
GAROM(problem=TensorProblem(),
|
||||
generator=Generator(),
|
||||
discriminator=Discriminator())
|
||||
assert GAROM.accepted_conditions_types == (
|
||||
InputOutputPointsCondition
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("batch_size", [None, 1, 5, 20])
|
||||
@pytest.mark.parametrize("compile", [True, False])
|
||||
def test_solver_train(batch_size, compile):
|
||||
solver = GAROM(problem=TensorProblem(),
|
||||
generator=Generator(),
|
||||
discriminator=Discriminator())
|
||||
trainer = Trainer(solver=solver,
|
||||
max_epochs=2,
|
||||
accelerator='cpu',
|
||||
batch_size=batch_size,
|
||||
train_size=1.,
|
||||
test_size=0.,
|
||||
val_size=0.,
|
||||
compile=compile)
|
||||
trainer.train()
|
||||
if trainer.compile:
|
||||
assert (all([isinstance(model, OptimizedModule)
|
||||
for model in solver.models]))
|
||||
|
||||
|
||||
@pytest.mark.parametrize("batch_size", [None, 1, 5, 20])
|
||||
@pytest.mark.parametrize("compile", [True, False])
|
||||
def test_solver_validation(batch_size, compile):
|
||||
solver = GAROM(problem=TensorProblem(),
|
||||
generator=Generator(),
|
||||
discriminator=Discriminator())
|
||||
|
||||
trainer = Trainer(solver=solver,
|
||||
max_epochs=2,
|
||||
accelerator='cpu',
|
||||
batch_size=batch_size,
|
||||
train_size=0.9,
|
||||
val_size=0.1,
|
||||
test_size=0.,
|
||||
compile=compile)
|
||||
trainer.train()
|
||||
if trainer.compile:
|
||||
assert (all([isinstance(model, OptimizedModule)
|
||||
for model in solver.models]))
|
||||
|
||||
|
||||
@pytest.mark.parametrize("batch_size", [None, 1, 5, 20])
|
||||
@pytest.mark.parametrize("compile", [True, False])
|
||||
def test_solver_test(batch_size, compile):
|
||||
solver = GAROM(problem=TensorProblem(),
|
||||
generator=Generator(),
|
||||
discriminator=Discriminator(),
|
||||
)
|
||||
trainer = Trainer(solver=solver,
|
||||
max_epochs=2,
|
||||
accelerator='cpu',
|
||||
batch_size=batch_size,
|
||||
train_size=0.8,
|
||||
val_size=0.1,
|
||||
test_size=0.1,
|
||||
compile=compile)
|
||||
trainer.test()
|
||||
if trainer.compile:
|
||||
assert (all([isinstance(model, OptimizedModule)
|
||||
for model in solver.models]))
|
||||
|
||||
|
||||
def test_train_load_restore():
|
||||
dir = "tests/test_solver/tmp/"
|
||||
problem = TensorProblem()
|
||||
solver = GAROM(problem=TensorProblem(),
|
||||
generator=Generator(),
|
||||
discriminator=Discriminator(),
|
||||
)
|
||||
trainer = Trainer(solver=solver,
|
||||
max_epochs=5,
|
||||
accelerator='cpu',
|
||||
batch_size=None,
|
||||
train_size=0.9,
|
||||
test_size=0.1,
|
||||
val_size=0.,
|
||||
default_root_dir=dir)
|
||||
trainer.train()
|
||||
|
||||
# restore
|
||||
new_trainer = Trainer(solver=solver, max_epochs=5, accelerator='cpu')
|
||||
new_trainer.train(
|
||||
ckpt_path=f'{dir}/lightning_logs/version_0/checkpoints/' +
|
||||
'epoch=4-step=5.ckpt')
|
||||
|
||||
# loading
|
||||
new_solver = GAROM.load_from_checkpoint(
|
||||
f'{dir}/lightning_logs/version_0/checkpoints/epoch=4-step=5.ckpt',
|
||||
problem=TensorProblem(), generator=Generator(), discriminator=Discriminator())
|
||||
|
||||
test_pts = torch.rand(20, 1)
|
||||
assert new_solver.forward(test_pts).shape == (20, 2)
|
||||
assert new_solver.forward(test_pts).shape == solver.forward(test_pts).shape
|
||||
|
||||
# rm directories
|
||||
import shutil
|
||||
shutil.rmtree('tests/test_solver/tmp')
|
||||
Reference in New Issue
Block a user