* solvers -> solver
* adaptive_functions -> adaptive_function
* callbacks -> callback
* operators -> operator
* pinns -> physics_informed_solver
* layers -> block
This commit is contained in:
Dario Coscia
2025-02-19 11:35:43 +01:00
committed by Nicola Demo
parent 810d215ca0
commit df673cad4e
90 changed files with 155 additions and 151 deletions

View File

@@ -0,0 +1,157 @@
import pytest
import torch
from pina import LabelTensor, Condition
from pina.model import FeedForward
from pina.trainer import Trainer
from pina.solver import RBAPINN
from pina.condition import (
InputOutputPointsCondition,
InputPointsEquationCondition,
DomainEquationCondition
)
from pina.problem.zoo import (
Poisson2DSquareProblem as Poisson,
InversePoisson2DSquareProblem as InversePoisson
)
from torch._dynamo.eval_frame import OptimizedModule
# define problems and model
problem = Poisson()
problem.discretise_domain(50)
inverse_problem = InversePoisson()
inverse_problem.discretise_domain(50)
model = FeedForward(
len(problem.input_variables),
len(problem.output_variables)
)
# add input-output condition to test supervised learning
input_pts = torch.rand(50, len(problem.input_variables))
input_pts = LabelTensor(input_pts, problem.input_variables)
output_pts = torch.rand(50, len(problem.output_variables))
output_pts = LabelTensor(output_pts, problem.output_variables)
problem.conditions['data'] = Condition(
input_points=input_pts,
output_points=output_pts
)
@pytest.mark.parametrize("problem", [problem, inverse_problem])
@pytest.mark.parametrize("eta", [1, 0.001])
@pytest.mark.parametrize("gamma", [0.5, 0.9])
def test_constructor(problem, eta, gamma):
with pytest.raises(AssertionError):
solver = RBAPINN(model=model, problem=problem, gamma=1.5)
solver = RBAPINN(model=model, problem=problem, eta=eta, gamma=gamma)
assert solver.accepted_conditions_types == (
InputOutputPointsCondition,
InputPointsEquationCondition,
DomainEquationCondition
)
@pytest.mark.parametrize("problem", [problem, inverse_problem])
def test_wrong_batch(problem):
with pytest.raises(NotImplementedError):
solver = RBAPINN(model=model, problem=problem)
trainer = Trainer(solver=solver,
max_epochs=2,
accelerator='cpu',
batch_size=10,
train_size=1.,
val_size=0.,
test_size=0.)
trainer.train()
@pytest.mark.parametrize("problem", [problem, inverse_problem])
@pytest.mark.parametrize("compile", [True, False])
def test_solver_train(problem, compile):
solver = RBAPINN(model=model, problem=problem)
trainer = Trainer(solver=solver,
max_epochs=2,
accelerator='cpu',
batch_size=None,
train_size=1.,
val_size=0.,
test_size=0.,
compile=compile)
trainer.train()
if trainer.compile:
assert (isinstance(solver.model, OptimizedModule))
@pytest.mark.parametrize("problem", [problem, inverse_problem])
@pytest.mark.parametrize("compile", [True, False])
def test_solver_validation(problem, compile):
solver = RBAPINN(model=model, problem=problem)
trainer = Trainer(solver=solver,
max_epochs=2,
accelerator='cpu',
batch_size=None,
train_size=0.9,
val_size=0.1,
test_size=0.,
compile=compile)
trainer.train()
if trainer.compile:
assert (isinstance(solver.model, OptimizedModule))
@pytest.mark.parametrize("problem", [problem, inverse_problem])
@pytest.mark.parametrize("compile", [True, False])
def test_solver_test(problem, compile):
solver = RBAPINN(model=model, problem=problem)
trainer = Trainer(solver=solver,
max_epochs=2,
accelerator='cpu',
batch_size=None,
train_size=0.7,
val_size=0.2,
test_size=0.1,
compile=compile)
trainer.test()
if trainer.compile:
assert (isinstance(solver.model, OptimizedModule))
@pytest.mark.parametrize("problem", [problem, inverse_problem])
def test_train_load_restore(problem):
dir = "tests/test_solver/tmp"
problem = problem
solver = RBAPINN(model=model, problem=problem)
trainer = Trainer(solver=solver,
max_epochs=5,
accelerator='cpu',
batch_size=None,
train_size=0.7,
val_size=0.2,
test_size=0.1,
default_root_dir=dir)
trainer.train()
# restore
new_trainer = Trainer(solver=solver, max_epochs=5, accelerator='cpu')
new_trainer.train(
ckpt_path=f'{dir}/lightning_logs/version_0/checkpoints/' +
'epoch=4-step=5.ckpt')
# loading
new_solver = RBAPINN.load_from_checkpoint(
f'{dir}/lightning_logs/version_0/checkpoints/epoch=4-step=5.ckpt',
problem=problem, model=model)
test_pts = LabelTensor(torch.rand(20, 2), problem.input_variables)
assert new_solver.forward(test_pts).shape == (20, 1)
assert new_solver.forward(test_pts).shape == (
solver.forward(test_pts).shape
)
torch.testing.assert_close(
new_solver.forward(test_pts),
solver.forward(test_pts))
# rm directories
import shutil
shutil.rmtree('tests/test_solver/tmp')