PINN variants addition and Solvers Update (#263)
* gpinn/basepinn new classes, pinn restructure * codacy fix gpinn/basepinn/pinn * inverse problem fix * Causal PINN (#267) * fix GPU training in inverse problem (#283) * Create a `compute_residual` attribute for `PINNInterface` * Modify dataloading in solvers (#286) * Modify PINNInterface by removing _loss_phys, _loss_data * Adding in PINNInterface a variable to track the current condition during training * Modify GPINN,PINN,CausalPINN to match changes in PINNInterface * Competitive Pinn Addition (#288) * fixing after rebase/ fix loss * fixing final issues --------- Co-authored-by: Dario Coscia <dariocoscia@Dario-Coscia.local> * Modify min max formulation to max min for paper consistency * Adding SAPINN solver (#291) * rom solver * fix import --------- Co-authored-by: Dario Coscia <dariocoscia@Dario-Coscia.local> Co-authored-by: Anna Ivagnes <75523024+annaivagnes@users.noreply.github.com> Co-authored-by: valc89 <103250118+valc89@users.noreply.github.com> Co-authored-by: Monthly Tag bot <mtbot@noreply.github.com> Co-authored-by: Nicola Demo <demo.nicola@gmail.com>
This commit is contained in:
@@ -110,9 +110,9 @@ class AveragingNeuralOperator(KernelNeuralOperator):
|
||||
"""
|
||||
points_tmp = x.extract(self.coordinates_indices)
|
||||
new_batch = x.extract(self.field_indices)
|
||||
new_batch = concatenate((new_batch, points_tmp), dim=2)
|
||||
new_batch = concatenate((new_batch, points_tmp), dim=-1)
|
||||
new_batch = self._lifting_operator(new_batch)
|
||||
new_batch = self._integral_kernels(new_batch)
|
||||
new_batch = concatenate((new_batch, points_tmp), dim=2)
|
||||
new_batch = concatenate((new_batch, points_tmp), dim=-1)
|
||||
new_batch = self._projection_operator(new_batch)
|
||||
return new_batch
|
||||
|
||||
Reference in New Issue
Block a user