PINN variants addition and Solvers Update (#263)
* gpinn/basepinn new classes, pinn restructure * codacy fix gpinn/basepinn/pinn * inverse problem fix * Causal PINN (#267) * fix GPU training in inverse problem (#283) * Create a `compute_residual` attribute for `PINNInterface` * Modify dataloading in solvers (#286) * Modify PINNInterface by removing _loss_phys, _loss_data * Adding in PINNInterface a variable to track the current condition during training * Modify GPINN,PINN,CausalPINN to match changes in PINNInterface * Competitive Pinn Addition (#288) * fixing after rebase/ fix loss * fixing final issues --------- Co-authored-by: Dario Coscia <dariocoscia@Dario-Coscia.local> * Modify min max formulation to max min for paper consistency * Adding SAPINN solver (#291) * rom solver * fix import --------- Co-authored-by: Dario Coscia <dariocoscia@Dario-Coscia.local> Co-authored-by: Anna Ivagnes <75523024+annaivagnes@users.noreply.github.com> Co-authored-by: valc89 <103250118+valc89@users.noreply.github.com> Co-authored-by: Monthly Tag bot <mtbot@noreply.github.com> Co-authored-by: Nicola Demo <demo.nicola@gmail.com>
This commit is contained in:
360
pina/solvers/pinns/competitive_pinn.py
Normal file
360
pina/solvers/pinns/competitive_pinn.py
Normal file
@@ -0,0 +1,360 @@
|
||||
""" Module for CompetitivePINN """
|
||||
|
||||
import torch
|
||||
import copy
|
||||
|
||||
try:
|
||||
from torch.optim.lr_scheduler import LRScheduler # torch >= 2.0
|
||||
except ImportError:
|
||||
from torch.optim.lr_scheduler import (
|
||||
_LRScheduler as LRScheduler,
|
||||
) # torch < 2.0
|
||||
|
||||
from torch.optim.lr_scheduler import ConstantLR
|
||||
|
||||
from .basepinn import PINNInterface
|
||||
from pina.utils import check_consistency
|
||||
from pina.problem import InverseProblem
|
||||
|
||||
|
||||
class CompetitivePINN(PINNInterface):
|
||||
r"""
|
||||
Competitive Physics Informed Neural Network (PINN) solver class.
|
||||
This class implements Competitive Physics Informed Neural
|
||||
Network solvers, using a user specified ``model`` to solve a specific
|
||||
``problem``. It can be used for solving both forward and inverse problems.
|
||||
|
||||
The Competitive Physics Informed Network aims to find
|
||||
the solution :math:`\mathbf{u}:\Omega\rightarrow\mathbb{R}^m`
|
||||
of the differential problem:
|
||||
|
||||
.. math::
|
||||
|
||||
\begin{cases}
|
||||
\mathcal{A}[\mathbf{u}](\mathbf{x})=0\quad,\mathbf{x}\in\Omega\\
|
||||
\mathcal{B}[\mathbf{u}](\mathbf{x})=0\quad,
|
||||
\mathbf{x}\in\partial\Omega
|
||||
\end{cases}
|
||||
|
||||
with a minimization (on ``model`` parameters) maximation (
|
||||
on ``discriminator`` parameters) of the loss function
|
||||
|
||||
.. math::
|
||||
\mathcal{L}_{\rm{problem}} = \frac{1}{N}\sum_{i=1}^N
|
||||
\mathcal{L}(D(\mathbf{x}_i)\mathcal{A}[\mathbf{u}](\mathbf{x}_i))+
|
||||
\frac{1}{N}\sum_{i=1}^N
|
||||
\mathcal{L}(D(\mathbf{x}_i)\mathcal{B}[\mathbf{u}](\mathbf{x}_i))
|
||||
|
||||
where :math:`D` is the discriminator network, which tries to find the points
|
||||
where the network performs worst, and :math:`\mathcal{L}` is a specific loss
|
||||
function, default Mean Square Error:
|
||||
|
||||
.. math::
|
||||
\mathcal{L}(v) = \| v \|^2_2.
|
||||
|
||||
.. seealso::
|
||||
|
||||
**Original reference**: Zeng, Qi, et al.
|
||||
"Competitive physics informed networks." International Conference on
|
||||
Learning Representations, ICLR 2022
|
||||
`OpenReview Preprint <https://openreview.net/forum?id=z9SIj-IM7tn>`_.
|
||||
|
||||
.. warning::
|
||||
This solver does not currently support the possibility to pass
|
||||
``extra_feature``.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
problem,
|
||||
model,
|
||||
discriminator=None,
|
||||
loss=torch.nn.MSELoss(),
|
||||
optimizer_model=torch.optim.Adam,
|
||||
optimizer_model_kwargs={"lr": 0.001},
|
||||
optimizer_discriminator=torch.optim.Adam,
|
||||
optimizer_discriminator_kwargs={"lr": 0.001},
|
||||
scheduler_model=ConstantLR,
|
||||
scheduler_model_kwargs={"factor": 1, "total_iters": 0},
|
||||
scheduler_discriminator=ConstantLR,
|
||||
scheduler_discriminator_kwargs={"factor": 1, "total_iters": 0},
|
||||
):
|
||||
"""
|
||||
:param AbstractProblem problem: The formualation of the problem.
|
||||
:param torch.nn.Module model: The neural network model to use
|
||||
for the model.
|
||||
:param torch.nn.Module discriminator: The neural network model to use
|
||||
for the discriminator. If ``None``, the discriminator network will
|
||||
have the same architecture as the model network.
|
||||
:param torch.nn.Module loss: The loss function used as minimizer,
|
||||
default :class:`torch.nn.MSELoss`.
|
||||
:param torch.optim.Optimizer optimizer_model: The neural
|
||||
network optimizer to use for the model network
|
||||
, default is `torch.optim.Adam`.
|
||||
:param dict optimizer_model_kwargs: Optimizer constructor keyword
|
||||
args. for the model.
|
||||
:param torch.optim.Optimizer optimizer_discriminator: The neural
|
||||
network optimizer to use for the discriminator network
|
||||
, default is `torch.optim.Adam`.
|
||||
:param dict optimizer_discriminator_kwargs: Optimizer constructor
|
||||
keyword args. for the discriminator.
|
||||
:param torch.optim.LRScheduler scheduler_model: Learning
|
||||
rate scheduler for the model.
|
||||
:param dict scheduler_model_kwargs: LR scheduler constructor
|
||||
keyword args.
|
||||
:param torch.optim.LRScheduler scheduler_discriminator: Learning
|
||||
rate scheduler for the discriminator.
|
||||
"""
|
||||
if discriminator is None:
|
||||
discriminator = copy.deepcopy(model)
|
||||
|
||||
super().__init__(
|
||||
models=[model, discriminator],
|
||||
problem=problem,
|
||||
optimizers=[optimizer_model, optimizer_discriminator],
|
||||
optimizers_kwargs=[
|
||||
optimizer_model_kwargs,
|
||||
optimizer_discriminator_kwargs,
|
||||
],
|
||||
extra_features=None, # CompetitivePINN doesn't take extra features
|
||||
loss=loss
|
||||
)
|
||||
|
||||
# set automatic optimization for GANs
|
||||
self.automatic_optimization = False
|
||||
|
||||
# check consistency
|
||||
check_consistency(scheduler_model, LRScheduler, subclass=True)
|
||||
check_consistency(scheduler_model_kwargs, dict)
|
||||
check_consistency(scheduler_discriminator, LRScheduler, subclass=True)
|
||||
check_consistency(scheduler_discriminator_kwargs, dict)
|
||||
|
||||
# assign schedulers
|
||||
self._schedulers = [
|
||||
scheduler_model(
|
||||
self.optimizers[0], **scheduler_model_kwargs
|
||||
),
|
||||
scheduler_discriminator(
|
||||
self.optimizers[1], **scheduler_discriminator_kwargs
|
||||
),
|
||||
]
|
||||
|
||||
self._model = self.models[0]
|
||||
self._discriminator = self.models[1]
|
||||
|
||||
def forward(self, x):
|
||||
r"""
|
||||
Forward pass implementation for the PINN solver. It returns the function
|
||||
evaluation :math:`\mathbf{u}(\mathbf{x})` at the control points
|
||||
:math:`\mathbf{x}`.
|
||||
|
||||
:param LabelTensor x: Input tensor for the PINN solver. It expects
|
||||
a tensor :math:`N \times D`, where :math:`N` the number of points
|
||||
in the mesh, :math:`D` the dimension of the problem,
|
||||
:return: PINN solution evaluated at contro points.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
return self.neural_net(x)
|
||||
|
||||
def loss_phys(self, samples, equation):
|
||||
"""
|
||||
Computes the physics loss for the Competitive PINN solver based on given
|
||||
samples and equation.
|
||||
|
||||
:param LabelTensor samples: The samples to evaluate the physics loss.
|
||||
:param EquationInterface equation: The governing equation
|
||||
representing the physics.
|
||||
:return: The physics loss calculated based on given
|
||||
samples and equation.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
# train one step of the model
|
||||
with torch.no_grad():
|
||||
discriminator_bets = self.discriminator(samples)
|
||||
loss_val = self._train_model(samples, equation, discriminator_bets)
|
||||
self.store_log(loss_value=float(loss_val))
|
||||
# detaching samples from the computational graph to erase it and setting
|
||||
# the gradient to true to create a new computational graph.
|
||||
# In alternative set `retain_graph=True`.
|
||||
samples = samples.detach()
|
||||
samples.requires_grad = True
|
||||
# train one step of discriminator
|
||||
discriminator_bets = self.discriminator(samples)
|
||||
self._train_discriminator(samples, equation, discriminator_bets)
|
||||
return loss_val
|
||||
|
||||
def loss_data(self, input_tensor, output_tensor):
|
||||
"""
|
||||
The data loss for the PINN solver. It computes the loss between the
|
||||
network output against the true solution.
|
||||
|
||||
:param LabelTensor input_tensor: The input to the neural networks.
|
||||
:param LabelTensor output_tensor: The true solution to compare the
|
||||
network solution.
|
||||
:return: The computed data loss.
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
self.optimizer_model.zero_grad()
|
||||
loss_val = super().loss_data(
|
||||
input_tensor, output_tensor).as_subclass(torch.Tensor)
|
||||
loss_val.backward()
|
||||
self.optimizer_model.step()
|
||||
return loss_val
|
||||
|
||||
def configure_optimizers(self):
|
||||
"""
|
||||
Optimizer configuration for the Competitive PINN solver.
|
||||
|
||||
:return: The optimizers and the schedulers
|
||||
:rtype: tuple(list, list)
|
||||
"""
|
||||
# if the problem is an InverseProblem, add the unknown parameters
|
||||
# to the parameters that the optimizer needs to optimize
|
||||
if isinstance(self.problem, InverseProblem):
|
||||
self.optimizer_model.add_param_group(
|
||||
{
|
||||
"params": [
|
||||
self._params[var]
|
||||
for var in self.problem.unknown_variables
|
||||
]
|
||||
}
|
||||
)
|
||||
return self.optimizers, self._schedulers
|
||||
|
||||
def on_train_batch_end(self,outputs, batch, batch_idx):
|
||||
"""
|
||||
This method is called at the end of each training batch, and ovverides
|
||||
the PytorchLightining implementation for logging the checkpoints.
|
||||
|
||||
:param torch.Tensor outputs: The output from the model for the
|
||||
current batch.
|
||||
:param tuple batch: The current batch of data.
|
||||
:param int batch_idx: The index of the current batch.
|
||||
:return: Whatever is returned by the parent
|
||||
method ``on_train_batch_end``.
|
||||
:rtype: Any
|
||||
"""
|
||||
# increase by one the counter of optimization to save loggers
|
||||
self.trainer.fit_loop.epoch_loop.manual_optimization.optim_step_progress.total.completed += 1
|
||||
return super().on_train_batch_end(outputs, batch, batch_idx)
|
||||
|
||||
def _train_discriminator(self, samples, equation, discriminator_bets):
|
||||
"""
|
||||
Trains the discriminator network of the Competitive PINN.
|
||||
|
||||
:param LabelTensor samples: Input samples to evaluate the physics loss.
|
||||
:param EquationInterface equation: The governing equation representing
|
||||
the physics.
|
||||
:param Tensor discriminator_bets: Predictions made by the discriminator
|
||||
network.
|
||||
"""
|
||||
# manual optimization
|
||||
self.optimizer_discriminator.zero_grad()
|
||||
# compute residual, we detach because the weights of the generator
|
||||
# model are fixed
|
||||
residual = self.compute_residual(samples=samples,
|
||||
equation=equation).detach()
|
||||
# compute competitive residual, the minus is because we maximise
|
||||
competitive_residual = residual * discriminator_bets
|
||||
loss_val = - self.loss(
|
||||
torch.zeros_like(competitive_residual, requires_grad=True),
|
||||
competitive_residual
|
||||
).as_subclass(torch.Tensor)
|
||||
# backprop
|
||||
self.manual_backward(loss_val)
|
||||
self.optimizer_discriminator.step()
|
||||
return
|
||||
|
||||
def _train_model(self, samples, equation, discriminator_bets):
|
||||
"""
|
||||
Trains the model network of the Competitive PINN.
|
||||
|
||||
:param LabelTensor samples: Input samples to evaluate the physics loss.
|
||||
:param EquationInterface equation: The governing equation representing
|
||||
the physics.
|
||||
:param Tensor discriminator_bets: Predictions made by the discriminator.
|
||||
network.
|
||||
:return: The computed data loss.
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
# manual optimization
|
||||
self.optimizer_model.zero_grad()
|
||||
# compute residual (detached for discriminator) and log
|
||||
residual = self.compute_residual(samples=samples, equation=equation)
|
||||
# store logging
|
||||
with torch.no_grad():
|
||||
loss_residual = self.loss(
|
||||
torch.zeros_like(residual),
|
||||
residual
|
||||
)
|
||||
# compute competitive residual, discriminator_bets are detached becase
|
||||
# we optimize only the generator model
|
||||
competitive_residual = residual * discriminator_bets.detach()
|
||||
loss_val = self.loss(
|
||||
torch.zeros_like(competitive_residual, requires_grad=True),
|
||||
competitive_residual
|
||||
).as_subclass(torch.Tensor)
|
||||
# backprop
|
||||
self.manual_backward(loss_val)
|
||||
self.optimizer_model.step()
|
||||
return loss_residual
|
||||
|
||||
@property
|
||||
def neural_net(self):
|
||||
"""
|
||||
Returns the neural network model.
|
||||
|
||||
:return: The neural network model.
|
||||
:rtype: torch.nn.Module
|
||||
"""
|
||||
return self._model
|
||||
|
||||
@property
|
||||
def discriminator(self):
|
||||
"""
|
||||
Returns the discriminator model (if applicable).
|
||||
|
||||
:return: The discriminator model.
|
||||
:rtype: torch.nn.Module
|
||||
"""
|
||||
return self._discriminator
|
||||
|
||||
@property
|
||||
def optimizer_model(self):
|
||||
"""
|
||||
Returns the optimizer associated with the neural network model.
|
||||
|
||||
:return: The optimizer for the neural network model.
|
||||
:rtype: torch.optim.Optimizer
|
||||
"""
|
||||
return self.optimizers[0]
|
||||
|
||||
@property
|
||||
def optimizer_discriminator(self):
|
||||
"""
|
||||
Returns the optimizer associated with the discriminator (if applicable).
|
||||
|
||||
:return: The optimizer for the discriminator.
|
||||
:rtype: torch.optim.Optimizer
|
||||
"""
|
||||
return self.optimizers[1]
|
||||
|
||||
@property
|
||||
def scheduler_model(self):
|
||||
"""
|
||||
Returns the scheduler associated with the neural network model.
|
||||
|
||||
:return: The scheduler for the neural network model.
|
||||
:rtype: torch.optim.lr_scheduler._LRScheduler
|
||||
"""
|
||||
return self._schedulers[0]
|
||||
|
||||
@property
|
||||
def scheduler_discriminator(self):
|
||||
"""
|
||||
Returns the scheduler associated with the discriminator (if applicable).
|
||||
|
||||
:return: The scheduler for the discriminator.
|
||||
:rtype: torch.optim.lr_scheduler._LRScheduler
|
||||
"""
|
||||
return self._schedulers[1]
|
||||
Reference in New Issue
Block a user