PINN variants addition and Solvers Update (#263)
* gpinn/basepinn new classes, pinn restructure * codacy fix gpinn/basepinn/pinn * inverse problem fix * Causal PINN (#267) * fix GPU training in inverse problem (#283) * Create a `compute_residual` attribute for `PINNInterface` * Modify dataloading in solvers (#286) * Modify PINNInterface by removing _loss_phys, _loss_data * Adding in PINNInterface a variable to track the current condition during training * Modify GPINN,PINN,CausalPINN to match changes in PINNInterface * Competitive Pinn Addition (#288) * fixing after rebase/ fix loss * fixing final issues --------- Co-authored-by: Dario Coscia <dariocoscia@Dario-Coscia.local> * Modify min max formulation to max min for paper consistency * Adding SAPINN solver (#291) * rom solver * fix import --------- Co-authored-by: Dario Coscia <dariocoscia@Dario-Coscia.local> Co-authored-by: Anna Ivagnes <75523024+annaivagnes@users.noreply.github.com> Co-authored-by: valc89 <103250118+valc89@users.noreply.github.com> Co-authored-by: Monthly Tag bot <mtbot@noreply.github.com> Co-authored-by: Nicola Demo <demo.nicola@gmail.com>
This commit is contained in:
494
pina/solvers/pinns/sapinn.py
Normal file
494
pina/solvers/pinns/sapinn.py
Normal file
@@ -0,0 +1,494 @@
|
||||
import torch
|
||||
from copy import deepcopy
|
||||
|
||||
try:
|
||||
from torch.optim.lr_scheduler import LRScheduler # torch >= 2.0
|
||||
except ImportError:
|
||||
from torch.optim.lr_scheduler import (
|
||||
_LRScheduler as LRScheduler,
|
||||
) # torch < 2.0
|
||||
|
||||
from .basepinn import PINNInterface
|
||||
from pina.utils import check_consistency
|
||||
from pina.problem import InverseProblem
|
||||
|
||||
from torch.optim.lr_scheduler import ConstantLR
|
||||
|
||||
class Weights(torch.nn.Module):
|
||||
"""
|
||||
This class aims to implements the mask model for
|
||||
self adaptive weights of the Self-Adaptive
|
||||
PINN solver.
|
||||
"""
|
||||
|
||||
def __init__(self, func):
|
||||
"""
|
||||
:param torch.nn.Module func: the mask module of SAPINN
|
||||
"""
|
||||
super().__init__()
|
||||
check_consistency(func, torch.nn.Module)
|
||||
self.sa_weights = torch.nn.Parameter(
|
||||
torch.Tensor()
|
||||
)
|
||||
self.func = func
|
||||
|
||||
def forward(self):
|
||||
"""
|
||||
Forward pass implementation for the mask module.
|
||||
It returns the function on the weights
|
||||
evaluation.
|
||||
|
||||
:return: evaluation of self adaptive weights through the mask.
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
return self.func(self.sa_weights)
|
||||
|
||||
class SAPINN(PINNInterface):
|
||||
r"""
|
||||
Self Adaptive Physics Informed Neural Network (SAPINN) solver class.
|
||||
This class implements Self-Adaptive Physics Informed Neural
|
||||
Network solvers, using a user specified ``model`` to solve a specific
|
||||
``problem``. It can be used for solving both forward and inverse problems.
|
||||
|
||||
The Self Adapive Physics Informed Neural Network aims to find
|
||||
the solution :math:`\mathbf{u}:\Omega\rightarrow\mathbb{R}^m`
|
||||
of the differential problem:
|
||||
|
||||
.. math::
|
||||
|
||||
\begin{cases}
|
||||
\mathcal{A}[\mathbf{u}](\mathbf{x})=0\quad,\mathbf{x}\in\Omega\\
|
||||
\mathcal{B}[\mathbf{u}](\mathbf{x})=0\quad,
|
||||
\mathbf{x}\in\partial\Omega
|
||||
\end{cases}
|
||||
|
||||
integrating the pointwise loss evaluation through a mask :math:`m` and
|
||||
self adaptive weights that permit to focus the loss function on
|
||||
specific training samples.
|
||||
The loss function to solve the problem is
|
||||
|
||||
.. math::
|
||||
|
||||
\mathcal{L}_{\rm{problem}} = \frac{1}{N} \sum_{i=1}^{N_\Omega} m
|
||||
\left( \lambda_{\Omega}^{i} \right) \mathcal{L} \left( \mathcal{A}
|
||||
[\mathbf{u}](\mathbf{x}) \right) + \frac{1}{N}
|
||||
\sum_{i=1}^{N_{\partial\Omega}}
|
||||
m \left( \lambda_{\partial\Omega}^{i} \right) \mathcal{L}
|
||||
\left( \mathcal{B}[\mathbf{u}](\mathbf{x})
|
||||
\right),
|
||||
|
||||
|
||||
denoting the self adaptive weights as
|
||||
:math:`\lambda_{\Omega}^1, \dots, \lambda_{\Omega}^{N_\Omega}` and
|
||||
:math:`\lambda_{\partial \Omega}^1, \dots,
|
||||
\lambda_{\Omega}^{N_\partial \Omega}`
|
||||
for :math:`\Omega` and :math:`\partial \Omega`, respectively.
|
||||
|
||||
Self Adaptive Physics Informed Neural Network identifies the solution
|
||||
and appropriate self adaptive weights by solving the following problem
|
||||
|
||||
.. math::
|
||||
|
||||
\min_{w} \max_{\lambda_{\Omega}^k, \lambda_{\partial \Omega}^s}
|
||||
\mathcal{L} ,
|
||||
|
||||
where :math:`w` denotes the network parameters, and
|
||||
:math:`\mathcal{L}` is a specific loss
|
||||
function, default Mean Square Error:
|
||||
|
||||
.. math::
|
||||
\mathcal{L}(v) = \| v \|^2_2.
|
||||
|
||||
.. seealso::
|
||||
**Original reference**: McClenny, Levi D., and Ulisses M. Braga-Neto.
|
||||
"Self-adaptive physics-informed neural networks."
|
||||
Journal of Computational Physics 474 (2023): 111722.
|
||||
DOI: `10.1016/
|
||||
j.jcp.2022.111722 <https://doi.org/10.1016/j.jcp.2022.111722>`_.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
problem,
|
||||
model,
|
||||
weights_function=torch.nn.Sigmoid(),
|
||||
extra_features=None,
|
||||
loss=torch.nn.MSELoss(),
|
||||
optimizer_model=torch.optim.Adam,
|
||||
optimizer_model_kwargs={"lr" : 0.001},
|
||||
optimizer_weights=torch.optim.Adam,
|
||||
optimizer_weights_kwargs={"lr" : 0.001},
|
||||
scheduler_model=ConstantLR,
|
||||
scheduler_model_kwargs={"factor" : 1, "total_iters" : 0},
|
||||
scheduler_weights=ConstantLR,
|
||||
scheduler_weights_kwargs={"factor" : 1, "total_iters" : 0}
|
||||
):
|
||||
"""
|
||||
:param AbstractProblem problem: The formualation of the problem.
|
||||
:param torch.nn.Module model: The neural network model to use
|
||||
for the model.
|
||||
:param torch.nn.Module weights_function: The neural network model
|
||||
related to the mask of SAPINN.
|
||||
default :obj:`~torch.nn.Sigmoid`.
|
||||
:param list(torch.nn.Module) extra_features: The additional input
|
||||
features to use as augmented input. If ``None`` no extra features
|
||||
are passed. If it is a list of :class:`torch.nn.Module`,
|
||||
the extra feature list is passed to all models. If it is a list
|
||||
of extra features' lists, each single list of extra feature
|
||||
is passed to a model.
|
||||
:param torch.nn.Module loss: The loss function used as minimizer,
|
||||
default :class:`torch.nn.MSELoss`.
|
||||
:param torch.optim.Optimizer optimizer_model: The neural
|
||||
network optimizer to use for the model network
|
||||
, default is `torch.optim.Adam`.
|
||||
:param dict optimizer_model_kwargs: Optimizer constructor keyword
|
||||
args. for the model.
|
||||
:param torch.optim.Optimizer optimizer_weights: The neural
|
||||
network optimizer to use for mask model model,
|
||||
default is `torch.optim.Adam`.
|
||||
:param dict optimizer_weights_kwargs: Optimizer constructor
|
||||
keyword args. for the mask module.
|
||||
:param torch.optim.LRScheduler scheduler_model: Learning
|
||||
rate scheduler for the model.
|
||||
:param dict scheduler_model_kwargs: LR scheduler constructor
|
||||
keyword args.
|
||||
:param torch.optim.LRScheduler scheduler_weights: Learning
|
||||
rate scheduler for the mask model.
|
||||
:param dict scheduler_model_kwargs: LR scheduler constructor
|
||||
keyword args.
|
||||
"""
|
||||
|
||||
# check consistency weitghs_function
|
||||
check_consistency(weights_function, torch.nn.Module)
|
||||
|
||||
# create models for weights
|
||||
weights_dict = {}
|
||||
for condition_name in problem.conditions:
|
||||
weights_dict[condition_name] = Weights(weights_function)
|
||||
weights_dict = torch.nn.ModuleDict(weights_dict)
|
||||
|
||||
|
||||
super().__init__(
|
||||
models=[model, weights_dict],
|
||||
problem=problem,
|
||||
optimizers=[optimizer_model, optimizer_weights],
|
||||
optimizers_kwargs=[
|
||||
optimizer_model_kwargs,
|
||||
optimizer_weights_kwargs
|
||||
],
|
||||
extra_features=extra_features,
|
||||
loss=loss
|
||||
)
|
||||
|
||||
# set automatic optimization
|
||||
self.automatic_optimization = False
|
||||
|
||||
# check consistency
|
||||
check_consistency(scheduler_model, LRScheduler, subclass=True)
|
||||
check_consistency(scheduler_model_kwargs, dict)
|
||||
check_consistency(scheduler_weights, LRScheduler, subclass=True)
|
||||
check_consistency(scheduler_weights_kwargs, dict)
|
||||
|
||||
# assign schedulers
|
||||
self._schedulers = [
|
||||
scheduler_model(
|
||||
self.optimizers[0], **scheduler_model_kwargs
|
||||
),
|
||||
scheduler_weights(
|
||||
self.optimizers[1], **scheduler_weights_kwargs
|
||||
),
|
||||
]
|
||||
|
||||
self._model = self.models[0]
|
||||
self._weights = self.models[1]
|
||||
|
||||
self._vectorial_loss = deepcopy(loss)
|
||||
self._vectorial_loss.reduction = "none"
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Forward pass implementation for the PINN
|
||||
solver. It returns the function
|
||||
evaluation :math:`\mathbf{u}(\mathbf{x})` at the control points
|
||||
:math:`\mathbf{x}`.
|
||||
|
||||
:param LabelTensor x: Input tensor for the SAPINN solver. It expects
|
||||
a tensor :math:`N \\times D`, where :math:`N` the number of points
|
||||
in the mesh, :math:`D` the dimension of the problem,
|
||||
:return: PINN solution.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
return self.neural_net(x)
|
||||
|
||||
def loss_phys(self, samples, equation):
|
||||
"""
|
||||
Computes the physics loss for the SAPINN solver based on given
|
||||
samples and equation.
|
||||
|
||||
:param LabelTensor samples: The samples to evaluate the physics loss.
|
||||
:param EquationInterface equation: The governing equation
|
||||
representing the physics.
|
||||
:return: The physics loss calculated based on given
|
||||
samples and equation.
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
# train weights
|
||||
self.optimizer_weights.zero_grad()
|
||||
weighted_loss, _ = self._loss_phys(samples, equation)
|
||||
loss_value = - weighted_loss.as_subclass(torch.Tensor)
|
||||
self.manual_backward(loss_value)
|
||||
self.optimizer_weights.step()
|
||||
|
||||
# detaching samples from the computational graph to erase it and setting
|
||||
# the gradient to true to create a new computational graph.
|
||||
# In alternative set `retain_graph=True`.
|
||||
samples = samples.detach()
|
||||
samples.requires_grad = True
|
||||
|
||||
# train model
|
||||
self.optimizer_model.zero_grad()
|
||||
weighted_loss, loss = self._loss_phys(samples, equation)
|
||||
loss_value = weighted_loss.as_subclass(torch.Tensor)
|
||||
self.manual_backward(loss_value)
|
||||
self.optimizer_model.step()
|
||||
|
||||
# store loss without weights
|
||||
self.store_log(loss_value=float(loss))
|
||||
return loss_value
|
||||
|
||||
def loss_data(self, input_tensor, output_tensor):
|
||||
"""
|
||||
Computes the data loss for the SAPINN solver based on input and
|
||||
output. It computes the loss between the
|
||||
network output against the true solution.
|
||||
|
||||
:param LabelTensor input_tensor: The input to the neural networks.
|
||||
:param LabelTensor output_tensor: The true solution to compare the
|
||||
network solution.
|
||||
:return: The computed data loss.
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
# train weights
|
||||
self.optimizer_weights.zero_grad()
|
||||
weighted_loss, _ = self._loss_data(input_tensor, output_tensor)
|
||||
loss_value = - weighted_loss.as_subclass(torch.Tensor)
|
||||
self.manual_backward(loss_value)
|
||||
self.optimizer_weights.step()
|
||||
|
||||
# detaching samples from the computational graph to erase it and setting
|
||||
# the gradient to true to create a new computational graph.
|
||||
# In alternative set `retain_graph=True`.
|
||||
input_tensor = input_tensor.detach()
|
||||
input_tensor.requires_grad = True
|
||||
|
||||
# train model
|
||||
self.optimizer_model.zero_grad()
|
||||
weighted_loss, loss = self._loss_data(input_tensor, output_tensor)
|
||||
loss_value = weighted_loss.as_subclass(torch.Tensor)
|
||||
self.manual_backward(loss_value)
|
||||
self.optimizer_model.step()
|
||||
|
||||
# store loss without weights
|
||||
self.store_log(loss_value=float(loss))
|
||||
return loss_value
|
||||
|
||||
def configure_optimizers(self):
|
||||
"""
|
||||
Optimizer configuration for the SAPINN
|
||||
solver.
|
||||
|
||||
:return: The optimizers and the schedulers
|
||||
:rtype: tuple(list, list)
|
||||
"""
|
||||
# if the problem is an InverseProblem, add the unknown parameters
|
||||
# to the parameters that the optimizer needs to optimize
|
||||
if isinstance(self.problem, InverseProblem):
|
||||
self.optimizers[0].add_param_group(
|
||||
{
|
||||
"params": [
|
||||
self._params[var]
|
||||
for var in self.problem.unknown_variables
|
||||
]
|
||||
}
|
||||
)
|
||||
return self.optimizers, self._schedulers
|
||||
|
||||
def on_train_batch_end(self,outputs, batch, batch_idx):
|
||||
"""
|
||||
This method is called at the end of each training batch, and ovverides
|
||||
the PytorchLightining implementation for logging the checkpoints.
|
||||
|
||||
:param torch.Tensor outputs: The output from the model for the
|
||||
current batch.
|
||||
:param tuple batch: The current batch of data.
|
||||
:param int batch_idx: The index of the current batch.
|
||||
:return: Whatever is returned by the parent
|
||||
method ``on_train_batch_end``.
|
||||
:rtype: Any
|
||||
"""
|
||||
# increase by one the counter of optimization to save loggers
|
||||
self.trainer.fit_loop.epoch_loop.manual_optimization.optim_step_progress.total.completed += 1
|
||||
return super().on_train_batch_end(outputs, batch, batch_idx)
|
||||
|
||||
def on_train_start(self):
|
||||
"""
|
||||
This method is called at the start of the training for setting
|
||||
the self adaptive weights as parameters of the mask model.
|
||||
|
||||
:return: Whatever is returned by the parent
|
||||
method ``on_train_start``.
|
||||
:rtype: Any
|
||||
"""
|
||||
device = torch.device(
|
||||
self.trainer._accelerator_connector._accelerator_flag
|
||||
)
|
||||
for condition_name, tensor in self.problem.input_pts.items():
|
||||
self.weights_dict.torchmodel[condition_name].sa_weights.data = torch.rand(
|
||||
(tensor.shape[0], 1),
|
||||
device = device
|
||||
)
|
||||
return super().on_train_start()
|
||||
|
||||
def on_load_checkpoint(self, checkpoint):
|
||||
"""
|
||||
Overriding the Pytorch Lightning ``on_load_checkpoint`` to handle
|
||||
checkpoints for Self Adaptive Weights. This method should not be
|
||||
overridden if not intentionally.
|
||||
|
||||
:param dict checkpoint: Pytorch Lightning checkpoint dict.
|
||||
"""
|
||||
for condition_name, tensor in self.problem.input_pts.items():
|
||||
self.weights_dict.torchmodel[condition_name].sa_weights.data = torch.rand(
|
||||
(tensor.shape[0], 1)
|
||||
)
|
||||
return super().on_load_checkpoint(checkpoint)
|
||||
|
||||
def _loss_phys(self, samples, equation):
|
||||
"""
|
||||
Elaboration of the physical loss for the SAPINN solver.
|
||||
|
||||
:param LabelTensor samples: Input samples to evaluate the physics loss.
|
||||
:param EquationInterface equation: the governing equation representing
|
||||
the physics.
|
||||
|
||||
:return: tuple with weighted and not weighted scalar loss
|
||||
:rtype: List[LabelTensor, LabelTensor]
|
||||
"""
|
||||
residual = self.compute_residual(samples, equation)
|
||||
return self._compute_loss(residual)
|
||||
|
||||
def _loss_data(self, input_tensor, output_tensor):
|
||||
"""
|
||||
Elaboration of the loss related to data for the SAPINN solver.
|
||||
|
||||
:param LabelTensor input_tensor: The input to the neural networks.
|
||||
:param LabelTensor output_tensor: The true solution to compare the
|
||||
network solution.
|
||||
|
||||
:return: tuple with weighted and not weighted scalar loss
|
||||
:rtype: List[LabelTensor, LabelTensor]
|
||||
"""
|
||||
residual = self.forward(input_tensor) - output_tensor
|
||||
return self._compute_loss(residual)
|
||||
|
||||
def _compute_loss(self, residual):
|
||||
"""
|
||||
Elaboration of the pointwise loss through the mask model and the
|
||||
self adaptive weights
|
||||
|
||||
:param LabelTensor residual: the matrix of residuals that have to
|
||||
be weighted
|
||||
|
||||
:return: tuple with weighted and not weighted loss
|
||||
:rtype List[LabelTensor, LabelTensor]
|
||||
"""
|
||||
weights = self.weights_dict.torchmodel[
|
||||
self.current_condition_name].forward()
|
||||
loss_value = self._vectorial_loss(torch.zeros_like(
|
||||
residual, requires_grad=True), residual)
|
||||
return (
|
||||
self._vect_to_scalar(weights * loss_value),
|
||||
self._vect_to_scalar(loss_value)
|
||||
)
|
||||
|
||||
def _vect_to_scalar(self, loss_value):
|
||||
"""
|
||||
Elaboration of the pointwise loss through the mask model and the
|
||||
self adaptive weights
|
||||
|
||||
:param LabelTensor loss_value: the matrix of pointwise loss
|
||||
|
||||
:return: the scalar loss
|
||||
:rtype LabelTensor
|
||||
"""
|
||||
if self.loss.reduction == "mean":
|
||||
ret = torch.mean(loss_value)
|
||||
elif self.loss.reduction == "sum":
|
||||
ret = torch.sum(loss_value)
|
||||
else:
|
||||
raise RuntimeError(f"Invalid reduction, got {self.loss.reduction} "
|
||||
"but expected mean or sum.")
|
||||
return ret
|
||||
|
||||
|
||||
@property
|
||||
def neural_net(self):
|
||||
"""
|
||||
Returns the neural network model.
|
||||
|
||||
:return: The neural network model.
|
||||
:rtype: torch.nn.Module
|
||||
"""
|
||||
return self.models[0]
|
||||
|
||||
@property
|
||||
def weights_dict(self):
|
||||
"""
|
||||
Return the mask models associate to the application of
|
||||
the mask to the self adaptive weights for each loss that
|
||||
compones the global loss of the problem.
|
||||
|
||||
:return: The ModuleDict for mask models.
|
||||
:rtype: torch.nn.ModuleDict
|
||||
"""
|
||||
return self.models[1]
|
||||
|
||||
@property
|
||||
def scheduler_model(self):
|
||||
"""
|
||||
Returns the scheduler associated with the neural network model.
|
||||
|
||||
:return: The scheduler for the neural network model.
|
||||
:rtype: torch.optim.lr_scheduler._LRScheduler
|
||||
"""
|
||||
return self._scheduler[0]
|
||||
|
||||
@property
|
||||
def scheduler_weights(self):
|
||||
"""
|
||||
Returns the scheduler associated with the mask model (if applicable).
|
||||
|
||||
:return: The scheduler for the mask model.
|
||||
:rtype: torch.optim.lr_scheduler._LRScheduler
|
||||
"""
|
||||
return self._scheduler[1]
|
||||
|
||||
@property
|
||||
def optimizer_model(self):
|
||||
"""
|
||||
Returns the optimizer associated with the neural network model.
|
||||
|
||||
:return: The optimizer for the neural network model.
|
||||
:rtype: torch.optim.Optimizer
|
||||
"""
|
||||
return self.optimizers[0]
|
||||
|
||||
@property
|
||||
def optimizer_weights(self):
|
||||
"""
|
||||
Returns the optimizer associated with the mask model (if applicable).
|
||||
|
||||
:return: The optimizer for the mask model.
|
||||
:rtype: torch.optim.Optimizer
|
||||
"""
|
||||
return self.optimizers[1]
|
||||
Reference in New Issue
Block a user