PINN variants addition and Solvers Update (#263)
* gpinn/basepinn new classes, pinn restructure * codacy fix gpinn/basepinn/pinn * inverse problem fix * Causal PINN (#267) * fix GPU training in inverse problem (#283) * Create a `compute_residual` attribute for `PINNInterface` * Modify dataloading in solvers (#286) * Modify PINNInterface by removing _loss_phys, _loss_data * Adding in PINNInterface a variable to track the current condition during training * Modify GPINN,PINN,CausalPINN to match changes in PINNInterface * Competitive Pinn Addition (#288) * fixing after rebase/ fix loss * fixing final issues --------- Co-authored-by: Dario Coscia <dariocoscia@Dario-Coscia.local> * Modify min max formulation to max min for paper consistency * Adding SAPINN solver (#291) * rom solver * fix import --------- Co-authored-by: Dario Coscia <dariocoscia@Dario-Coscia.local> Co-authored-by: Anna Ivagnes <75523024+annaivagnes@users.noreply.github.com> Co-authored-by: valc89 <103250118+valc89@users.noreply.github.com> Co-authored-by: Monthly Tag bot <mtbot@noreply.github.com> Co-authored-by: Nicola Demo <demo.nicola@gmail.com>
This commit is contained in:
@@ -1,6 +1,6 @@
|
||||
import torch
|
||||
|
||||
from pina.problem import SpatialProblem
|
||||
from pina.problem import SpatialProblem, InverseProblem
|
||||
from pina.operators import laplacian
|
||||
from pina.geometry import CartesianDomain
|
||||
from pina import Condition, LabelTensor
|
||||
@@ -26,6 +26,58 @@ in2_ = LabelTensor(torch.rand(60, 2), ['x', 'y'])
|
||||
out2_ = LabelTensor(torch.rand(60, 1), ['u'])
|
||||
|
||||
|
||||
class InversePoisson(SpatialProblem, InverseProblem):
|
||||
'''
|
||||
Problem definition for the Poisson equation.
|
||||
'''
|
||||
output_variables = ['u']
|
||||
x_min = -2
|
||||
x_max = 2
|
||||
y_min = -2
|
||||
y_max = 2
|
||||
data_input = LabelTensor(torch.rand(10, 2), ['x', 'y'])
|
||||
data_output = LabelTensor(torch.rand(10, 1), ['u'])
|
||||
spatial_domain = CartesianDomain({'x': [x_min, x_max], 'y': [y_min, y_max]})
|
||||
# define the ranges for the parameters
|
||||
unknown_parameter_domain = CartesianDomain({'mu1': [-1, 1], 'mu2': [-1, 1]})
|
||||
|
||||
def laplace_equation(input_, output_, params_):
|
||||
'''
|
||||
Laplace equation with a force term.
|
||||
'''
|
||||
force_term = torch.exp(
|
||||
- 2*(input_.extract(['x']) - params_['mu1'])**2
|
||||
- 2*(input_.extract(['y']) - params_['mu2'])**2)
|
||||
delta_u = laplacian(output_, input_, components=['u'], d=['x', 'y'])
|
||||
|
||||
return delta_u - force_term
|
||||
|
||||
# define the conditions for the loss (boundary conditions, equation, data)
|
||||
conditions = {
|
||||
'gamma1': Condition(location=CartesianDomain({'x': [x_min, x_max],
|
||||
'y': y_max}),
|
||||
equation=FixedValue(0.0, components=['u'])),
|
||||
'gamma2': Condition(location=CartesianDomain(
|
||||
{'x': [x_min, x_max], 'y': y_min
|
||||
}),
|
||||
equation=FixedValue(0.0, components=['u'])),
|
||||
'gamma3': Condition(location=CartesianDomain(
|
||||
{'x': x_max, 'y': [y_min, y_max]
|
||||
}),
|
||||
equation=FixedValue(0.0, components=['u'])),
|
||||
'gamma4': Condition(location=CartesianDomain(
|
||||
{'x': x_min, 'y': [y_min, y_max]
|
||||
}),
|
||||
equation=FixedValue(0.0, components=['u'])),
|
||||
'D': Condition(location=CartesianDomain(
|
||||
{'x': [x_min, x_max], 'y': [y_min, y_max]
|
||||
}),
|
||||
equation=Equation(laplace_equation)),
|
||||
'data': Condition(input_points=data_input.extract(['x', 'y']),
|
||||
output_points=data_output)
|
||||
}
|
||||
|
||||
|
||||
class Poisson(SpatialProblem):
|
||||
output_variables = ['u']
|
||||
spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})
|
||||
@@ -103,8 +155,10 @@ def test_train_cpu():
|
||||
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
n = 10
|
||||
poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
|
||||
pinn = PINN(problem = poisson_problem, model=model, extra_features=None, loss=LpLoss())
|
||||
trainer = Trainer(solver=pinn, max_epochs=1, accelerator='cpu', batch_size=20)
|
||||
pinn = PINN(problem = poisson_problem, model=model,
|
||||
extra_features=None, loss=LpLoss())
|
||||
trainer = Trainer(solver=pinn, max_epochs=1,
|
||||
accelerator='cpu', batch_size=20)
|
||||
trainer.train()
|
||||
|
||||
|
||||
@@ -125,7 +179,8 @@ def test_train_restore():
|
||||
trainer.train()
|
||||
ntrainer = Trainer(solver=pinn, max_epochs=15, accelerator='cpu')
|
||||
t = ntrainer.train(
|
||||
ckpt_path=f'{tmpdir}/lightning_logs/version_0/checkpoints/epoch=4-step=10.ckpt')
|
||||
ckpt_path=f'{tmpdir}/lightning_logs/version_0/'
|
||||
'checkpoints/epoch=4-step=10.ckpt')
|
||||
import shutil
|
||||
shutil.rmtree(tmpdir)
|
||||
|
||||
@@ -158,6 +213,68 @@ def test_train_load():
|
||||
import shutil
|
||||
shutil.rmtree(tmpdir)
|
||||
|
||||
def test_train_inverse_problem_cpu():
|
||||
poisson_problem = InversePoisson()
|
||||
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4', 'D']
|
||||
n = 100
|
||||
poisson_problem.discretise_domain(n, 'random', locations=boundaries)
|
||||
pinn = PINN(problem = poisson_problem, model=model,
|
||||
extra_features=None, loss=LpLoss())
|
||||
trainer = Trainer(solver=pinn, max_epochs=1,
|
||||
accelerator='cpu', batch_size=20)
|
||||
trainer.train()
|
||||
|
||||
|
||||
# # TODO does not currently work
|
||||
# def test_train_inverse_problem_restore():
|
||||
# tmpdir = "tests/tmp_restore_inv"
|
||||
# poisson_problem = InversePoisson()
|
||||
# boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4', 'D']
|
||||
# n = 100
|
||||
# poisson_problem.discretise_domain(n, 'random', locations=boundaries)
|
||||
# pinn = PINN(problem=poisson_problem,
|
||||
# model=model,
|
||||
# extra_features=None,
|
||||
# loss=LpLoss())
|
||||
# trainer = Trainer(solver=pinn,
|
||||
# max_epochs=5,
|
||||
# accelerator='cpu',
|
||||
# default_root_dir=tmpdir)
|
||||
# trainer.train()
|
||||
# ntrainer = Trainer(solver=pinn, max_epochs=5, accelerator='cpu')
|
||||
# t = ntrainer.train(
|
||||
# ckpt_path=f'{tmpdir}/lightning_logs/version_0/checkpoints/epoch=4-step=10.ckpt')
|
||||
# import shutil
|
||||
# shutil.rmtree(tmpdir)
|
||||
|
||||
|
||||
def test_train_inverse_problem_load():
|
||||
tmpdir = "tests/tmp_load_inv"
|
||||
poisson_problem = InversePoisson()
|
||||
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4', 'D']
|
||||
n = 100
|
||||
poisson_problem.discretise_domain(n, 'random', locations=boundaries)
|
||||
pinn = PINN(problem=poisson_problem,
|
||||
model=model,
|
||||
extra_features=None,
|
||||
loss=LpLoss())
|
||||
trainer = Trainer(solver=pinn,
|
||||
max_epochs=15,
|
||||
accelerator='cpu',
|
||||
default_root_dir=tmpdir)
|
||||
trainer.train()
|
||||
new_pinn = PINN.load_from_checkpoint(
|
||||
f'{tmpdir}/lightning_logs/version_0/checkpoints/epoch=14-step=30.ckpt',
|
||||
problem = poisson_problem, model=model)
|
||||
test_pts = CartesianDomain({'x': [0, 1], 'y': [0, 1]}).sample(10)
|
||||
assert new_pinn.forward(test_pts).extract(['u']).shape == (10, 1)
|
||||
assert new_pinn.forward(test_pts).extract(
|
||||
['u']).shape == pinn.forward(test_pts).extract(['u']).shape
|
||||
torch.testing.assert_close(
|
||||
new_pinn.forward(test_pts).extract(['u']),
|
||||
pinn.forward(test_pts).extract(['u']))
|
||||
import shutil
|
||||
shutil.rmtree(tmpdir)
|
||||
|
||||
# # TODO fix asap. Basically sampling few variables
|
||||
# # works only if both variables are in a range.
|
||||
@@ -197,85 +314,32 @@ def test_train_extra_feats_cpu():
|
||||
# pinn = PINN(problem = poisson_problem, model=model, extra_features=None, loss=LpLoss())
|
||||
# trainer = Trainer(solver=pinn, kwargs={'max_epochs' : 5, 'accelerator':'gpu'})
|
||||
# trainer.train()
|
||||
"""
|
||||
def test_train_gpu(): #TODO fix ASAP
|
||||
poisson_problem = Poisson()
|
||||
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
n = 10
|
||||
poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
|
||||
poisson_problem.conditions.pop('data') # The input/output pts are allocated on cpu
|
||||
pinn = PINN(problem = poisson_problem, model=model, extra_features=None, loss=LpLoss())
|
||||
trainer = Trainer(solver=pinn, kwargs={'max_epochs' : 5, 'accelerator':'gpu'})
|
||||
trainer.train()
|
||||
|
||||
def test_train_2():
|
||||
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
n = 10
|
||||
expected_keys = [[], list(range(0, 50, 3))]
|
||||
param = [0, 3]
|
||||
for i, truth_key in zip(param, expected_keys):
|
||||
pinn = PINN(problem, model)
|
||||
pinn.discretise_domain(n, 'grid', locations=boundaries)
|
||||
pinn.discretise_domain(n, 'grid', locations=['D'])
|
||||
pinn.train(50, save_loss=i)
|
||||
assert list(pinn.history_loss.keys()) == truth_key
|
||||
# def test_train_gpu(): #TODO fix ASAP
|
||||
# poisson_problem = Poisson()
|
||||
# boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
# n = 10
|
||||
# poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
|
||||
# poisson_problem.conditions.pop('data') # The input/output pts are allocated on cpu
|
||||
# pinn = PINN(problem = poisson_problem, model=model, extra_features=None, loss=LpLoss())
|
||||
# trainer = Trainer(solver=pinn, kwargs={'max_epochs' : 5, 'accelerator':'gpu'})
|
||||
# trainer.train()
|
||||
|
||||
# def test_train_2():
|
||||
# boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
# n = 10
|
||||
# expected_keys = [[], list(range(0, 50, 3))]
|
||||
# param = [0, 3]
|
||||
# for i, truth_key in zip(param, expected_keys):
|
||||
# pinn = PINN(problem, model)
|
||||
# pinn.discretise_domain(n, 'grid', locations=boundaries)
|
||||
# pinn.discretise_domain(n, 'grid', locations=['D'])
|
||||
# pinn.train(50, save_loss=i)
|
||||
# assert list(pinn.history_loss.keys()) == truth_key
|
||||
|
||||
|
||||
def test_train_extra_feats():
|
||||
pinn = PINN(problem, model_extra_feat, [myFeature()])
|
||||
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
n = 10
|
||||
pinn.discretise_domain(n, 'grid', locations=boundaries)
|
||||
pinn.discretise_domain(n, 'grid', locations=['D'])
|
||||
pinn.train(5)
|
||||
|
||||
|
||||
def test_train_2_extra_feats():
|
||||
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
n = 10
|
||||
expected_keys = [[], list(range(0, 50, 3))]
|
||||
param = [0, 3]
|
||||
for i, truth_key in zip(param, expected_keys):
|
||||
pinn = PINN(problem, model_extra_feat, [myFeature()])
|
||||
pinn.discretise_domain(n, 'grid', locations=boundaries)
|
||||
pinn.discretise_domain(n, 'grid', locations=['D'])
|
||||
pinn.train(50, save_loss=i)
|
||||
assert list(pinn.history_loss.keys()) == truth_key
|
||||
|
||||
|
||||
def test_train_with_optimizer_kwargs():
|
||||
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
n = 10
|
||||
expected_keys = [[], list(range(0, 50, 3))]
|
||||
param = [0, 3]
|
||||
for i, truth_key in zip(param, expected_keys):
|
||||
pinn = PINN(problem, model, optimizer_kwargs={'lr' : 0.3})
|
||||
pinn.discretise_domain(n, 'grid', locations=boundaries)
|
||||
pinn.discretise_domain(n, 'grid', locations=['D'])
|
||||
pinn.train(50, save_loss=i)
|
||||
assert list(pinn.history_loss.keys()) == truth_key
|
||||
|
||||
|
||||
def test_train_with_lr_scheduler():
|
||||
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
n = 10
|
||||
expected_keys = [[], list(range(0, 50, 3))]
|
||||
param = [0, 3]
|
||||
for i, truth_key in zip(param, expected_keys):
|
||||
pinn = PINN(
|
||||
problem,
|
||||
model,
|
||||
lr_scheduler_type=torch.optim.lr_scheduler.CyclicLR,
|
||||
lr_scheduler_kwargs={'base_lr' : 0.1, 'max_lr' : 0.3, 'cycle_momentum': False}
|
||||
)
|
||||
pinn.discretise_domain(n, 'grid', locations=boundaries)
|
||||
pinn.discretise_domain(n, 'grid', locations=['D'])
|
||||
pinn.train(50, save_loss=i)
|
||||
assert list(pinn.history_loss.keys()) == truth_key
|
||||
|
||||
|
||||
# def test_train_batch():
|
||||
# pinn = PINN(problem, model, batch_size=6)
|
||||
# def test_train_extra_feats():
|
||||
# pinn = PINN(problem, model_extra_feat, [myFeature()])
|
||||
# boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
# n = 10
|
||||
# pinn.discretise_domain(n, 'grid', locations=boundaries)
|
||||
@@ -283,34 +347,87 @@ def test_train_with_lr_scheduler():
|
||||
# pinn.train(5)
|
||||
|
||||
|
||||
# def test_train_batch_2():
|
||||
# def test_train_2_extra_feats():
|
||||
# boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
# n = 10
|
||||
# expected_keys = [[], list(range(0, 50, 3))]
|
||||
# param = [0, 3]
|
||||
# for i, truth_key in zip(param, expected_keys):
|
||||
# pinn = PINN(problem, model, batch_size=6)
|
||||
# pinn = PINN(problem, model_extra_feat, [myFeature()])
|
||||
# pinn.discretise_domain(n, 'grid', locations=boundaries)
|
||||
# pinn.discretise_domain(n, 'grid', locations=['D'])
|
||||
# pinn.train(50, save_loss=i)
|
||||
# assert list(pinn.history_loss.keys()) == truth_key
|
||||
|
||||
|
||||
if torch.cuda.is_available():
|
||||
# def test_train_with_optimizer_kwargs():
|
||||
# boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
# n = 10
|
||||
# expected_keys = [[], list(range(0, 50, 3))]
|
||||
# param = [0, 3]
|
||||
# for i, truth_key in zip(param, expected_keys):
|
||||
# pinn = PINN(problem, model, optimizer_kwargs={'lr' : 0.3})
|
||||
# pinn.discretise_domain(n, 'grid', locations=boundaries)
|
||||
# pinn.discretise_domain(n, 'grid', locations=['D'])
|
||||
# pinn.train(50, save_loss=i)
|
||||
# assert list(pinn.history_loss.keys()) == truth_key
|
||||
|
||||
# def test_gpu_train():
|
||||
# pinn = PINN(problem, model, batch_size=20, device='cuda')
|
||||
# boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
# n = 100
|
||||
# pinn.discretise_domain(n, 'grid', locations=boundaries)
|
||||
# pinn.discretise_domain(n, 'grid', locations=['D'])
|
||||
# pinn.train(5)
|
||||
|
||||
def test_gpu_train_nobatch():
|
||||
pinn = PINN(problem, model, batch_size=None, device='cuda')
|
||||
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
n = 100
|
||||
pinn.discretise_domain(n, 'grid', locations=boundaries)
|
||||
pinn.discretise_domain(n, 'grid', locations=['D'])
|
||||
pinn.train(5)
|
||||
"""
|
||||
# def test_train_with_lr_scheduler():
|
||||
# boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
# n = 10
|
||||
# expected_keys = [[], list(range(0, 50, 3))]
|
||||
# param = [0, 3]
|
||||
# for i, truth_key in zip(param, expected_keys):
|
||||
# pinn = PINN(
|
||||
# problem,
|
||||
# model,
|
||||
# lr_scheduler_type=torch.optim.lr_scheduler.CyclicLR,
|
||||
# lr_scheduler_kwargs={'base_lr' : 0.1, 'max_lr' : 0.3, 'cycle_momentum': False}
|
||||
# )
|
||||
# pinn.discretise_domain(n, 'grid', locations=boundaries)
|
||||
# pinn.discretise_domain(n, 'grid', locations=['D'])
|
||||
# pinn.train(50, save_loss=i)
|
||||
# assert list(pinn.history_loss.keys()) == truth_key
|
||||
|
||||
|
||||
# # def test_train_batch():
|
||||
# # pinn = PINN(problem, model, batch_size=6)
|
||||
# # boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
# # n = 10
|
||||
# # pinn.discretise_domain(n, 'grid', locations=boundaries)
|
||||
# # pinn.discretise_domain(n, 'grid', locations=['D'])
|
||||
# # pinn.train(5)
|
||||
|
||||
|
||||
# # def test_train_batch_2():
|
||||
# # boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
# # n = 10
|
||||
# # expected_keys = [[], list(range(0, 50, 3))]
|
||||
# # param = [0, 3]
|
||||
# # for i, truth_key in zip(param, expected_keys):
|
||||
# # pinn = PINN(problem, model, batch_size=6)
|
||||
# # pinn.discretise_domain(n, 'grid', locations=boundaries)
|
||||
# # pinn.discretise_domain(n, 'grid', locations=['D'])
|
||||
# # pinn.train(50, save_loss=i)
|
||||
# # assert list(pinn.history_loss.keys()) == truth_key
|
||||
|
||||
|
||||
# if torch.cuda.is_available():
|
||||
|
||||
# # def test_gpu_train():
|
||||
# # pinn = PINN(problem, model, batch_size=20, device='cuda')
|
||||
# # boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
# # n = 100
|
||||
# # pinn.discretise_domain(n, 'grid', locations=boundaries)
|
||||
# # pinn.discretise_domain(n, 'grid', locations=['D'])
|
||||
# # pinn.train(5)
|
||||
|
||||
# def test_gpu_train_nobatch():
|
||||
# pinn = PINN(problem, model, batch_size=None, device='cuda')
|
||||
# boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
# n = 100
|
||||
# pinn.discretise_domain(n, 'grid', locations=boundaries)
|
||||
# pinn.discretise_domain(n, 'grid', locations=['D'])
|
||||
# pinn.train(5)
|
||||
|
||||
|
||||
Reference in New Issue
Block a user