PINN variants addition and Solvers Update (#263)
* gpinn/basepinn new classes, pinn restructure * codacy fix gpinn/basepinn/pinn * inverse problem fix * Causal PINN (#267) * fix GPU training in inverse problem (#283) * Create a `compute_residual` attribute for `PINNInterface` * Modify dataloading in solvers (#286) * Modify PINNInterface by removing _loss_phys, _loss_data * Adding in PINNInterface a variable to track the current condition during training * Modify GPINN,PINN,CausalPINN to match changes in PINNInterface * Competitive Pinn Addition (#288) * fixing after rebase/ fix loss * fixing final issues --------- Co-authored-by: Dario Coscia <dariocoscia@Dario-Coscia.local> * Modify min max formulation to max min for paper consistency * Adding SAPINN solver (#291) * rom solver * fix import --------- Co-authored-by: Dario Coscia <dariocoscia@Dario-Coscia.local> Co-authored-by: Anna Ivagnes <75523024+annaivagnes@users.noreply.github.com> Co-authored-by: valc89 <103250118+valc89@users.noreply.github.com> Co-authored-by: Monthly Tag bot <mtbot@noreply.github.com> Co-authored-by: Nicola Demo <demo.nicola@gmail.com>
This commit is contained in:
105
tests/test_solvers/test_rom_solver.py
Normal file
105
tests/test_solvers/test_rom_solver.py
Normal file
@@ -0,0 +1,105 @@
|
||||
import torch
|
||||
import pytest
|
||||
|
||||
from pina.problem import AbstractProblem
|
||||
from pina import Condition, LabelTensor
|
||||
from pina.solvers import ReducedOrderModelSolver
|
||||
from pina.trainer import Trainer
|
||||
from pina.model import FeedForward
|
||||
from pina.loss import LpLoss
|
||||
|
||||
|
||||
class NeuralOperatorProblem(AbstractProblem):
|
||||
input_variables = ['u_0', 'u_1']
|
||||
output_variables = [f'u_{i}' for i in range(100)]
|
||||
conditions = {'data' : Condition(input_points=
|
||||
LabelTensor(torch.rand(10, 2),
|
||||
input_variables),
|
||||
output_points=
|
||||
LabelTensor(torch.rand(10, 100),
|
||||
output_variables))}
|
||||
|
||||
|
||||
# make the problem + extra feats
|
||||
class AE(torch.nn.Module):
|
||||
def __init__(self, input_dimensions, rank):
|
||||
super().__init__()
|
||||
self.encode = FeedForward(input_dimensions, rank, layers=[input_dimensions//4])
|
||||
self.decode = FeedForward(rank, input_dimensions, layers=[input_dimensions//4])
|
||||
class AE_missing_encode(torch.nn.Module):
|
||||
def __init__(self, input_dimensions, rank):
|
||||
super().__init__()
|
||||
self.encode = FeedForward(input_dimensions, rank, layers=[input_dimensions//4])
|
||||
class AE_missing_decode(torch.nn.Module):
|
||||
def __init__(self, input_dimensions, rank):
|
||||
super().__init__()
|
||||
self.decode = FeedForward(rank, input_dimensions, layers=[input_dimensions//4])
|
||||
|
||||
rank = 10
|
||||
problem = NeuralOperatorProblem()
|
||||
interpolation_net = FeedForward(len(problem.input_variables),
|
||||
rank)
|
||||
reduction_net = AE(len(problem.output_variables), rank)
|
||||
|
||||
def test_constructor():
|
||||
ReducedOrderModelSolver(problem=problem,reduction_network=reduction_net,
|
||||
interpolation_network=interpolation_net)
|
||||
with pytest.raises(SyntaxError):
|
||||
ReducedOrderModelSolver(problem=problem,
|
||||
reduction_network=AE_missing_encode(
|
||||
len(problem.output_variables), rank),
|
||||
interpolation_network=interpolation_net)
|
||||
ReducedOrderModelSolver(problem=problem,
|
||||
reduction_network=AE_missing_decode(
|
||||
len(problem.output_variables), rank),
|
||||
interpolation_network=interpolation_net)
|
||||
|
||||
|
||||
def test_train_cpu():
|
||||
solver = ReducedOrderModelSolver(problem = problem,reduction_network=reduction_net,
|
||||
interpolation_network=interpolation_net, loss=LpLoss())
|
||||
trainer = Trainer(solver=solver, max_epochs=3, accelerator='cpu', batch_size=20)
|
||||
trainer.train()
|
||||
|
||||
|
||||
def test_train_restore():
|
||||
tmpdir = "tests/tmp_restore"
|
||||
solver = ReducedOrderModelSolver(problem=problem,
|
||||
reduction_network=reduction_net,
|
||||
interpolation_network=interpolation_net,
|
||||
loss=LpLoss())
|
||||
trainer = Trainer(solver=solver,
|
||||
max_epochs=5,
|
||||
accelerator='cpu',
|
||||
default_root_dir=tmpdir)
|
||||
trainer.train()
|
||||
ntrainer = Trainer(solver=solver, max_epochs=15, accelerator='cpu')
|
||||
t = ntrainer.train(
|
||||
ckpt_path=f'{tmpdir}/lightning_logs/version_0/checkpoints/epoch=4-step=5.ckpt')
|
||||
import shutil
|
||||
shutil.rmtree(tmpdir)
|
||||
|
||||
|
||||
def test_train_load():
|
||||
tmpdir = "tests/tmp_load"
|
||||
solver = ReducedOrderModelSolver(problem=problem,
|
||||
reduction_network=reduction_net,
|
||||
interpolation_network=interpolation_net,
|
||||
loss=LpLoss())
|
||||
trainer = Trainer(solver=solver,
|
||||
max_epochs=15,
|
||||
accelerator='cpu',
|
||||
default_root_dir=tmpdir)
|
||||
trainer.train()
|
||||
new_solver = ReducedOrderModelSolver.load_from_checkpoint(
|
||||
f'{tmpdir}/lightning_logs/version_0/checkpoints/epoch=14-step=15.ckpt',
|
||||
problem = problem,reduction_network=reduction_net,
|
||||
interpolation_network=interpolation_net)
|
||||
test_pts = LabelTensor(torch.rand(20, 2), problem.input_variables)
|
||||
assert new_solver.forward(test_pts).shape == (20, 100)
|
||||
assert new_solver.forward(test_pts).shape == solver.forward(test_pts).shape
|
||||
torch.testing.assert_close(
|
||||
new_solver.forward(test_pts),
|
||||
solver.forward(test_pts))
|
||||
import shutil
|
||||
shutil.rmtree(tmpdir)
|
||||
Reference in New Issue
Block a user