Unifying integral kernel NO architectures (#239)
* Unify integral kernel NO architectures with NeuralKernelOperator * Implement FNO based on NeuralKernelOperator * modify doc for FNO and add for FourierIntegralKernel, NeuralKernelOperator * adding tests --------- Co-authored-by: Dario Coscia <dariocoscia@Dario-Coscia.local> Co-authored-by: Dario Coscia <dariocoscia@dhcp-015.eduroam.sissa.it>
This commit is contained in:
@@ -48,11 +48,13 @@ Models
|
||||
:maxdepth: 5
|
||||
|
||||
Network <models/network.rst>
|
||||
KernelNeuralOperator <models/base_no.rst>
|
||||
FeedForward <models/fnn.rst>
|
||||
MultiFeedForward <models/multifeedforward.rst>
|
||||
ResidualFeedForward <models/fnn_residual.rst>
|
||||
DeepONet <models/deeponet.rst>
|
||||
MIONet <models/mionet.rst>
|
||||
FourierIntegralKernel <models/fourier_kernel.rst>
|
||||
FNO <models/fno.rst>
|
||||
|
||||
Layers
|
||||
|
||||
7
docs/source/_rst/models/base_no.rst
Normal file
7
docs/source/_rst/models/base_no.rst
Normal file
@@ -0,0 +1,7 @@
|
||||
KernelNeuralOperator
|
||||
=======================
|
||||
.. currentmodule:: pina.model.base_no
|
||||
|
||||
.. autoclass:: KernelNeuralOperator
|
||||
:members:
|
||||
:show-inheritance:
|
||||
7
docs/source/_rst/models/fourier_kernel.rst
Normal file
7
docs/source/_rst/models/fourier_kernel.rst
Normal file
@@ -0,0 +1,7 @@
|
||||
FourierIntegralKernel
|
||||
=========================
|
||||
.. currentmodule:: pina.model.fno
|
||||
|
||||
.. autoclass:: FourierIntegralKernel
|
||||
:members:
|
||||
:show-inheritance:
|
||||
@@ -1,13 +1,16 @@
|
||||
__all__ = [
|
||||
"FeedForward",
|
||||
"ResidualFeedForward",
|
||||
"MultiFeedForward",
|
||||
"DeepONet",
|
||||
"MIONet",
|
||||
"FNO",
|
||||
'FeedForward',
|
||||
'ResidualFeedForward',
|
||||
'MultiFeedForward',
|
||||
'DeepONet',
|
||||
'MIONet',
|
||||
'FNO',
|
||||
'FourierIntegralKernel',
|
||||
'KernelNeuralOperator'
|
||||
]
|
||||
|
||||
from .feed_forward import FeedForward, ResidualFeedForward
|
||||
from .multi_feed_forward import MultiFeedForward
|
||||
from .deeponet import DeepONet, MIONet
|
||||
from .fno import FNO
|
||||
from .fno import FNO, FourierIntegralKernel
|
||||
from .base_no import KernelNeuralOperator
|
||||
|
||||
136
pina/model/base_no.py
Normal file
136
pina/model/base_no.py
Normal file
@@ -0,0 +1,136 @@
|
||||
"""
|
||||
Kernel Neural Operator Module.
|
||||
"""
|
||||
|
||||
import torch
|
||||
from pina.utils import check_consistency
|
||||
|
||||
|
||||
class KernelNeuralOperator(torch.nn.Module):
|
||||
r"""
|
||||
Base class for composing Neural Operators with integral kernels.
|
||||
|
||||
This is a base class for composing neural operators with multiple
|
||||
integral kernels. All neural operator models defined in PINA inherit
|
||||
from this class. The structure is inspired by the work of Kovachki, N.
|
||||
et al. see Figure 2 of the reference for extra details. The Neural
|
||||
Operators inheriting from this class can be written as:
|
||||
|
||||
.. math::
|
||||
G_\theta := P \circ K_m \circ \cdot \circ K_1 \circ L
|
||||
|
||||
where:
|
||||
|
||||
* :math:`G_\theta: \mathcal{A}\subset \mathbb{R}^{\rm{in}} \rightarrow
|
||||
\mathcal{D}\subset \mathbb{R}^{\rm{out}}` is the neural operator
|
||||
approximation of the unknown real operator :math:`G`, that is
|
||||
:math:`G \approx G_\theta`
|
||||
* :math:`L: \mathcal{A}\subset \mathbb{R}^{\rm{in}} \rightarrow
|
||||
\mathbb{R}^{\rm{emb}}` is a lifting operator mapping the input
|
||||
from its domain :math:`\mathcal{A}\subset \mathbb{R}^{\rm{in}}`
|
||||
to its embedding dimension :math:`\mathbb{R}^{\rm{emb}}`
|
||||
* :math:`\{K_i : \mathbb{R}^{\rm{emb}} \rightarrow
|
||||
\mathbb{R}^{\rm{emb}} \}_{i=1}^m` are :math:`m` integral kernels
|
||||
mapping each hidden representation to the next one.
|
||||
* :math:`P : \mathbb{R}^{\rm{emb}} \rightarrow \mathcal{D}\subset
|
||||
\mathbb{R}^{\rm{out}}` is a projection operator mapping the hidden
|
||||
representation to the output function.
|
||||
|
||||
.. seealso::
|
||||
|
||||
**Original reference**: Kovachki, N., Li, Z., Liu, B.,
|
||||
Azizzadenesheli, K., Bhattacharya, K., Stuart, A., & Anandkumar, A.
|
||||
(2023). *Neural operator: Learning maps between function
|
||||
spaces with applications to PDEs*. Journal of Machine Learning
|
||||
Research, 24(89), 1-97.
|
||||
"""
|
||||
def __init__(self, lifting_operator, integral_kernels, projection_operator):
|
||||
"""
|
||||
:param torch.nn.Module lifting_operator: The lifting operator
|
||||
mapping the input to its hidden dimension.
|
||||
:param torch.nn.Module integral_kernels: List of integral kernels
|
||||
mapping each hidden representation to the next one.
|
||||
:param torch.nn.Module projection_operator: The projection operator
|
||||
mapping the hidden representation to the output function.
|
||||
"""
|
||||
|
||||
super().__init__()
|
||||
|
||||
self._lifting_operator = lifting_operator
|
||||
self._integral_kernels = integral_kernels
|
||||
self._projection_operator = projection_operator
|
||||
|
||||
@property
|
||||
def lifting_operator(self):
|
||||
"""
|
||||
The lifting operator property.
|
||||
"""
|
||||
return self._lifting_operator
|
||||
|
||||
@lifting_operator.setter
|
||||
def lifting_operator(self, value):
|
||||
"""
|
||||
The lifting operator setter
|
||||
|
||||
:param torch.nn.Module value: The lifting operator torch module.
|
||||
"""
|
||||
check_consistency(value, torch.nn.Module)
|
||||
self._lifting_operator = value
|
||||
|
||||
@property
|
||||
def projection_operator(self):
|
||||
"""
|
||||
The projection operator property.
|
||||
"""
|
||||
return self._projection_operator
|
||||
|
||||
@projection_operator.setter
|
||||
def projection_operator(self, value):
|
||||
"""
|
||||
The projection operator setter
|
||||
|
||||
:param torch.nn.Module value: The projection operator torch module.
|
||||
"""
|
||||
check_consistency(value, torch.nn.Module)
|
||||
self._projection_operator = value
|
||||
|
||||
@property
|
||||
def integral_kernels(self):
|
||||
"""
|
||||
The integral kernels operator property.
|
||||
"""
|
||||
return self._integral_kernels
|
||||
|
||||
@integral_kernels.setter
|
||||
def integral_kernels(self, value):
|
||||
"""
|
||||
The integral kernels operator setter
|
||||
|
||||
:param torch.nn.Module value: The integral kernels operator torch
|
||||
module.
|
||||
"""
|
||||
check_consistency(value, torch.nn.Module)
|
||||
self._integral_kernels = value
|
||||
|
||||
def forward(self, x):
|
||||
r"""
|
||||
Forward computation for Base Neural Operator. It performs a
|
||||
lifting of the input by the ``lifting_operator``.
|
||||
Then different layers integral kernels are applied using
|
||||
``integral_kernels``. Finally the output is projected
|
||||
to the final dimensionality by the ``projection_operator``.
|
||||
|
||||
:param torch.Tensor x: The input tensor for performing the
|
||||
computation. It expects a tensor :math:`B \times N \times D`,
|
||||
where :math:`B` is the batch_size, :math:`N` the number of points
|
||||
in the mesh, :math:`D` the dimension of the problem. In particular
|
||||
:math:`D` is the number of spatial/paramtric/temporal variables
|
||||
plus the field variables. For example for 2D problems with 2
|
||||
output\ variables :math:`D=4`.
|
||||
:return: The output tensor obtained from the NO.
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
x = self.lifting_operator(x)
|
||||
x = self.integral_kernels(x)
|
||||
x = self.projection_operator(x)
|
||||
return x
|
||||
@@ -1,34 +1,36 @@
|
||||
"""
|
||||
Fourier Neural Operator Module.
|
||||
"""
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from ..utils import check_consistency
|
||||
from .layers.fourier import FourierBlock1D, FourierBlock2D, FourierBlock3D
|
||||
from pina import LabelTensor
|
||||
import warnings
|
||||
from ..utils import check_consistency
|
||||
from .layers.fourier import FourierBlock1D, FourierBlock2D, FourierBlock3D
|
||||
from .base_no import KernelNeuralOperator
|
||||
|
||||
|
||||
class FNO(torch.nn.Module):
|
||||
class FourierIntegralKernel(torch.nn.Module):
|
||||
"""
|
||||
The PINA implementation of Fourier Neural Operator network.
|
||||
Implementation of Fourier Integral Kernel network.
|
||||
|
||||
Fourier Neural Operator (FNO) is a general architecture for learning Operators.
|
||||
Unlike traditional machine learning methods FNO is designed to map
|
||||
entire functions to other functions. It can be trained both with
|
||||
Supervised learning strategies. FNO does global convolution by performing the
|
||||
operation on the Fourier space.
|
||||
This class implements the Fourier Integral Kernel network, which is a
|
||||
PINA implementation of Fourier Neural Operator kernel network.
|
||||
It performs global convolution by operating in the Fourier space.
|
||||
|
||||
.. seealso::
|
||||
|
||||
**Original reference**: Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B.,
|
||||
Bhattacharya, K., Stuart, A., & Anandkumar, A. (2020). *Fourier neural operator for
|
||||
parametric partial differential equations*.
|
||||
**Original reference**: Li, Z., Kovachki, N., Azizzadenesheli,
|
||||
K., Liu, B., Bhattacharya, K., Stuart, A., & Anandkumar, A.
|
||||
(2020). *Fourier neural operator for parametric partial
|
||||
differential equations*.
|
||||
DOI: `arXiv preprint arXiv:2010.08895.
|
||||
<https://arxiv.org/abs/2010.08895>`_
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
lifting_net,
|
||||
projecting_net,
|
||||
def __init__(self,
|
||||
input_numb_fields,
|
||||
output_numb_fields,
|
||||
n_modes,
|
||||
dimensions=3,
|
||||
padding=8,
|
||||
@@ -36,19 +38,29 @@ class FNO(torch.nn.Module):
|
||||
inner_size=20,
|
||||
n_layers=2,
|
||||
func=nn.Tanh,
|
||||
layers=None,
|
||||
):
|
||||
layers=None):
|
||||
"""
|
||||
:param int input_numb_fields: Number of input fields.
|
||||
:param int output_numb_fields: Number of output fields.
|
||||
:param int | list[int] n_modes: Number of modes.
|
||||
:param int dimensions: Number of dimensions (1, 2, or 3).
|
||||
:param int padding: Padding size, defaults to 8.
|
||||
:param str padding_type: Type of padding, defaults to "constant".
|
||||
:param int inner_size: Inner size, defaults to 20.
|
||||
:param int n_layers: Number of layers, defaults to 2.
|
||||
:param torch.nn.Module func: Activation function, defaults to nn.Tanh.
|
||||
:param list[int] layers: List of layer sizes, defaults to None.
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
# check type consistency
|
||||
check_consistency(lifting_net, nn.Module)
|
||||
check_consistency(projecting_net, nn.Module)
|
||||
check_consistency(dimensions, int)
|
||||
check_consistency(padding, int)
|
||||
check_consistency(padding_type, str)
|
||||
check_consistency(inner_size, int)
|
||||
check_consistency(n_layers, int)
|
||||
check_consistency(func, nn.Module, subclass=True)
|
||||
|
||||
if layers is not None:
|
||||
if isinstance(layers, (tuple, list)):
|
||||
check_consistency(layers, int)
|
||||
@@ -57,13 +69,9 @@ class FNO(torch.nn.Module):
|
||||
if not isinstance(n_modes, (list, tuple, int)):
|
||||
raise ValueError(
|
||||
"n_modes must be a int or list or tuple of valid modes."
|
||||
" More information on the official documentation."
|
||||
)
|
||||
" More information on the official documentation.")
|
||||
|
||||
# assign variables
|
||||
# TODO check input lifting net and input projecting net
|
||||
self._lifting_net = lifting_net
|
||||
self._projecting_net = projecting_net
|
||||
# assign padding
|
||||
self._padding = padding
|
||||
|
||||
# initialize fourier layer for each dimension
|
||||
@@ -74,9 +82,11 @@ class FNO(torch.nn.Module):
|
||||
elif dimensions == 3:
|
||||
fourier_layer = FourierBlock3D
|
||||
else:
|
||||
raise NotImplementedError("FNO implemented only for 1D/2D/3D data.")
|
||||
raise NotImplementedError(
|
||||
"FNO implemented only for 1D/2D/3D data."
|
||||
)
|
||||
|
||||
# Here we build the FNO by stacking Fourier Blocks
|
||||
# Here we build the FNO kernels by stacking Fourier Blocks
|
||||
|
||||
# 1. Assign output dimensions for each FNO layer
|
||||
if layers is None:
|
||||
@@ -86,43 +96,33 @@ class FNO(torch.nn.Module):
|
||||
if isinstance(func, list):
|
||||
if len(layers) != len(func):
|
||||
raise RuntimeError(
|
||||
"Uncosistent number of layers and functions."
|
||||
)
|
||||
self._functions = func
|
||||
'Uncosistent number of layers and functions.')
|
||||
_functions = func
|
||||
else:
|
||||
self._functions = [func for _ in range(len(layers))]
|
||||
_functions = [func for _ in range(len(layers) - 1)]
|
||||
_functions.append(torch.nn.Identity)
|
||||
|
||||
# 3. Assign modes functions for each FNO layer
|
||||
if isinstance(n_modes, list):
|
||||
if all(isinstance(i, list) for i in n_modes) and len(layers) != len(
|
||||
n_modes
|
||||
):
|
||||
if all(isinstance(i, list)
|
||||
for i in n_modes) and len(layers) != len(n_modes):
|
||||
raise RuntimeError(
|
||||
"Uncosistent number of layers and functions."
|
||||
)
|
||||
"Uncosistent number of layers and functions.")
|
||||
elif all(isinstance(i, int) for i in n_modes):
|
||||
n_modes = [n_modes] * len(layers)
|
||||
else:
|
||||
n_modes = [n_modes] * len(layers)
|
||||
|
||||
# 4. Build the FNO network
|
||||
tmp_layers = layers.copy()
|
||||
first_parameter = next(lifting_net.parameters())
|
||||
input_shape = first_parameter.size()
|
||||
out_feats = lifting_net(torch.rand(size=input_shape)).shape[-1]
|
||||
tmp_layers.insert(0, out_feats)
|
||||
|
||||
self._layers = []
|
||||
for i in range(len(tmp_layers) - 1):
|
||||
self._layers.append(
|
||||
fourier_layer(
|
||||
input_numb_fields=tmp_layers[i],
|
||||
_layers = []
|
||||
tmp_layers = [input_numb_fields] + layers + [output_numb_fields]
|
||||
for i in range(len(layers)):
|
||||
_layers.append(
|
||||
fourier_layer(input_numb_fields=tmp_layers[i],
|
||||
output_numb_fields=tmp_layers[i + 1],
|
||||
n_modes=n_modes[i],
|
||||
activation=self._functions[i],
|
||||
)
|
||||
)
|
||||
self._layers = nn.Sequential(*self._layers)
|
||||
activation=_functions[i]))
|
||||
self._layers = nn.Sequential(*_layers)
|
||||
|
||||
# 5. Padding values for spectral conv
|
||||
if isinstance(padding, int):
|
||||
@@ -140,23 +140,22 @@ class FNO(torch.nn.Module):
|
||||
of Fourier Blocks are applied. Finally the output is projected
|
||||
to the final dimensionality by the ``projecting_net``.
|
||||
|
||||
:param torch.Tensor x: The input tensor for fourier block, depending on
|
||||
``dimension`` in the initialization. In particular it is expected
|
||||
:param torch.Tensor x: The input tensor for fourier block,
|
||||
depending on ``dimension`` in the initialization.
|
||||
In particular it is expected:
|
||||
|
||||
* 1D tensors: ``[batch, X, channels]``
|
||||
* 2D tensors: ``[batch, X, Y, channels]``
|
||||
* 3D tensors: ``[batch, X, Y, Z, channels]``
|
||||
:return: The output tensor obtained from the FNO.
|
||||
:return: The output tensor obtained from the kernels convolution.
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
if isinstance(x, LabelTensor): # TODO remove when Network is fixed
|
||||
if isinstance(x, LabelTensor): #TODO remove when Network is fixed
|
||||
warnings.warn(
|
||||
"LabelTensor passed as input is not allowed, casting LabelTensor to Torch.Tensor"
|
||||
'LabelTensor passed as input is not allowed,'
|
||||
' casting LabelTensor to Torch.Tensor'
|
||||
)
|
||||
x = x.as_subclass(torch.Tensor)
|
||||
|
||||
# lifting the input in higher dimensional space
|
||||
x = self._lifting_net(x)
|
||||
|
||||
# permuting the input [batch, channels, x, y, ...]
|
||||
permutation_idx = [0, x.ndim - 1, *[i for i in range(1, x.ndim - 1)]]
|
||||
x = x.permute(permutation_idx)
|
||||
@@ -175,5 +174,85 @@ class FNO(torch.nn.Module):
|
||||
permutation_idx = [0, *[i for i in range(2, x.ndim)], 1]
|
||||
x = x.permute(permutation_idx)
|
||||
|
||||
# apply projecting operator and return
|
||||
return self._projecting_net(x)
|
||||
return x
|
||||
|
||||
|
||||
class FNO(KernelNeuralOperator):
|
||||
"""
|
||||
The PINA implementation of Fourier Neural Operator network.
|
||||
|
||||
Fourier Neural Operator (FNO) is a general architecture for
|
||||
learning Operators. Unlike traditional machine learning methods
|
||||
FNO is designed to map entire functions to other functions. It
|
||||
can be trained with Supervised learning strategies. FNO does global
|
||||
convolution by performing the operation on the Fourier space.
|
||||
|
||||
.. seealso::
|
||||
|
||||
**Original reference**: Li, Z., Kovachki, N., Azizzadenesheli,
|
||||
K., Liu, B., Bhattacharya, K., Stuart, A., & Anandkumar, A.
|
||||
(2020). *Fourier neural operator for parametric partial
|
||||
differential equations*.
|
||||
DOI: `arXiv preprint arXiv:2010.08895.
|
||||
<https://arxiv.org/abs/2010.08895>`_
|
||||
"""
|
||||
def __init__(self,
|
||||
lifting_net,
|
||||
projecting_net,
|
||||
n_modes,
|
||||
dimensions=3,
|
||||
padding=8,
|
||||
padding_type="constant",
|
||||
inner_size=20,
|
||||
n_layers=2,
|
||||
func=nn.Tanh,
|
||||
layers=None):
|
||||
"""
|
||||
:param torch.nn.Module lifting_net: The neural network for lifting
|
||||
the input.
|
||||
:param torch.nn.Module projecting_net: The neural network for
|
||||
projecting the output.
|
||||
:param int | list[int] n_modes: Number of modes.
|
||||
:param int dimensions: Number of dimensions (1, 2, or 3).
|
||||
:param int padding: Padding size, defaults to 8.
|
||||
:param str padding_type: Type of padding, defaults to `constant`.
|
||||
:param int inner_size: Inner size, defaults to 20.
|
||||
:param int n_layers: Number of layers, defaults to 2.
|
||||
:param torch.nn.Module func: Activation function, defaults to nn.Tanh.
|
||||
:param list[int] layers: List of layer sizes, defaults to None.
|
||||
"""
|
||||
lifting_operator_out = lifting_net(
|
||||
torch.rand(size=next(lifting_net.parameters()).size())).shape[-1]
|
||||
super().__init__(lifting_operator=lifting_net,
|
||||
projection_operator=projecting_net,
|
||||
integral_kernels=FourierIntegralKernel(
|
||||
input_numb_fields=lifting_operator_out,
|
||||
output_numb_fields=next(
|
||||
projecting_net.parameters()).size(),
|
||||
n_modes=n_modes,
|
||||
dimensions=dimensions,
|
||||
padding=padding,
|
||||
padding_type=padding_type,
|
||||
inner_size=inner_size,
|
||||
n_layers=n_layers,
|
||||
func=func,
|
||||
layers=layers))
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Forward computation for Fourier Neural Operator. It performs a
|
||||
lifting of the input by the ``lifting_net``. Then different layers
|
||||
of Fourier Blocks are applied. Finally the output is projected
|
||||
to the final dimensionality by the ``projecting_net``.
|
||||
|
||||
:param torch.Tensor x: The input tensor for fourier block,
|
||||
depending on ``dimension`` in the initialization. In
|
||||
particular it is expected:
|
||||
|
||||
* 1D tensors: ``[batch, X, channels]``
|
||||
* 2D tensors: ``[batch, X, Y, channels]``
|
||||
* 3D tensors: ``[batch, X, Y, Z, channels]``
|
||||
:return: The output tensor obtained from FNO.
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
return super().forward(x)
|
||||
|
||||
40
tests/test_model/test_base_no.py
Normal file
40
tests/test_model/test_base_no.py
Normal file
@@ -0,0 +1,40 @@
|
||||
import torch
|
||||
from pina.model import KernelNeuralOperator, FeedForward
|
||||
|
||||
input_dim = 2
|
||||
output_dim = 4
|
||||
embedding_dim = 24
|
||||
batch_size = 10
|
||||
numb = 256
|
||||
data = torch.rand(size=(batch_size, numb, input_dim), requires_grad=True)
|
||||
output_shape = torch.Size([batch_size, numb, output_dim])
|
||||
|
||||
|
||||
lifting_operator = FeedForward(input_dimensions=input_dim, output_dimensions=embedding_dim)
|
||||
projection_operator = FeedForward(input_dimensions=embedding_dim, output_dimensions=output_dim)
|
||||
integral_kernels = torch.nn.Sequential(FeedForward(input_dimensions=embedding_dim,
|
||||
output_dimensions=embedding_dim),
|
||||
FeedForward(input_dimensions=embedding_dim,
|
||||
output_dimensions=embedding_dim),)
|
||||
|
||||
def test_constructor():
|
||||
KernelNeuralOperator(lifting_operator=lifting_operator,
|
||||
integral_kernels=integral_kernels,
|
||||
projection_operator=projection_operator)
|
||||
|
||||
def test_forward():
|
||||
operator = KernelNeuralOperator(lifting_operator=lifting_operator,
|
||||
integral_kernels=integral_kernels,
|
||||
projection_operator=projection_operator)
|
||||
out = operator(data)
|
||||
assert out.shape == output_shape
|
||||
|
||||
def test_backward():
|
||||
operator = KernelNeuralOperator(lifting_operator=lifting_operator,
|
||||
integral_kernels=integral_kernels,
|
||||
projection_operator=projection_operator)
|
||||
out = operator(data)
|
||||
loss = torch.nn.functional.mse_loss(out, torch.zeros_like(out))
|
||||
loss.backward()
|
||||
grad = data.grad
|
||||
assert grad.shape == data.shape
|
||||
Reference in New Issue
Block a user