Improve efficiency and refact LabelTensor, codacy correction and fix bug in PinaBatch
This commit is contained in:
committed by
Nicola Demo
parent
ccc5f5a322
commit
ea3d1924e7
@@ -1,10 +1,12 @@
|
||||
"""
|
||||
Basic data module implementation
|
||||
"""
|
||||
from torch.utils.data import Dataset
|
||||
import torch
|
||||
import logging
|
||||
|
||||
from torch.utils.data import Dataset
|
||||
|
||||
from ..label_tensor import LabelTensor
|
||||
from ..graph import Graph
|
||||
|
||||
|
||||
class BaseDataset(Dataset):
|
||||
@@ -12,10 +14,9 @@ class BaseDataset(Dataset):
|
||||
BaseDataset class, which handle initialization and data retrieval
|
||||
:var condition_indices: List of indices
|
||||
:var device: torch.device
|
||||
:var condition_names: dict of condition index and corresponding name
|
||||
"""
|
||||
|
||||
def __new__(cls, problem, device):
|
||||
def __new__(cls, problem=None, device=torch.device('cpu')):
|
||||
"""
|
||||
Ensure correct definition of __slots__ before initialization
|
||||
:param AbstractProblem problem: The formulation of the problem.
|
||||
@@ -30,7 +31,7 @@ class BaseDataset(Dataset):
|
||||
'Something is wrong, __slots__ must be defined in subclasses.')
|
||||
return object.__new__(cls)
|
||||
|
||||
def __init__(self, problem, device):
|
||||
def __init__(self, problem=None, device=torch.device('cpu')):
|
||||
""""
|
||||
Initialize the object based on __slots__
|
||||
:param AbstractProblem problem: The formulation of the problem.
|
||||
@@ -38,79 +39,118 @@ class BaseDataset(Dataset):
|
||||
dataset will be loaded.
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.condition_names = {}
|
||||
collector = problem.collector
|
||||
self.empty = True
|
||||
self.problem = problem
|
||||
self.device = device
|
||||
self.condition_indices = None
|
||||
for slot in self.__slots__:
|
||||
setattr(self, slot, [])
|
||||
num_el_per_condition = []
|
||||
idx = 0
|
||||
for name, data in collector.data_collections.items():
|
||||
self.num_el_per_condition = []
|
||||
self.conditions_idx = []
|
||||
if self.problem is not None:
|
||||
self._init_from_problem(self.problem.collector.data_collections)
|
||||
self.initialized = False
|
||||
|
||||
def _init_from_problem(self, collector_dict):
|
||||
"""
|
||||
TODO
|
||||
"""
|
||||
for name, data in collector_dict.items():
|
||||
keys = list(data.keys())
|
||||
current_cond_num_el = None
|
||||
if sorted(self.__slots__) == sorted(keys):
|
||||
for slot in self.__slots__:
|
||||
slot_data = data[slot]
|
||||
if isinstance(slot_data, (LabelTensor, torch.Tensor,
|
||||
Graph)):
|
||||
if current_cond_num_el is None:
|
||||
current_cond_num_el = len(slot_data)
|
||||
elif current_cond_num_el != len(slot_data):
|
||||
raise ValueError('Different number of conditions')
|
||||
current_list = getattr(self, slot)
|
||||
current_list += [data[slot]] if not (
|
||||
isinstance(data[slot], list)) else data[slot]
|
||||
num_el_per_condition.append(current_cond_num_el)
|
||||
self.condition_names[idx] = name
|
||||
idx += 1
|
||||
if num_el_per_condition:
|
||||
if set(self.__slots__) == set(keys):
|
||||
self._populate_init_list(data)
|
||||
idx = [key for key, val in
|
||||
self.problem.collector.conditions_name.items() if
|
||||
val == name]
|
||||
self.conditions_idx.append(idx)
|
||||
self.initialize()
|
||||
|
||||
def add_points(self, data_dict, condition_idx, batching_dim=0):
|
||||
"""
|
||||
This method filled internal lists of data points
|
||||
:param data_dict: dictionary containing data points
|
||||
:param condition_idx: index of the condition to which the data points
|
||||
belong to
|
||||
:param batching_dim: dimension of the batching
|
||||
:raises: ValueError if the dataset has already been initialized
|
||||
"""
|
||||
if not self.initialized:
|
||||
self._populate_init_list(data_dict, batching_dim)
|
||||
self.conditions_idx.append(condition_idx)
|
||||
self.empty = False
|
||||
else:
|
||||
raise ValueError('Dataset already initialized')
|
||||
|
||||
def _populate_init_list(self, data_dict, batching_dim=0):
|
||||
current_cond_num_el = None
|
||||
for slot in data_dict.keys():
|
||||
slot_data = data_dict[slot]
|
||||
if batching_dim != 0:
|
||||
if isinstance(slot_data, (LabelTensor, torch.Tensor)):
|
||||
dims = len(slot_data.size())
|
||||
slot_data = slot_data.permute(
|
||||
[batching_dim] + [dim for dim in range(dims) if
|
||||
dim != batching_dim])
|
||||
if current_cond_num_el is None:
|
||||
current_cond_num_el = len(slot_data)
|
||||
elif current_cond_num_el != len(slot_data):
|
||||
raise ValueError('Different dimension in same condition')
|
||||
current_list = getattr(self, slot)
|
||||
current_list += [slot_data] if not (
|
||||
isinstance(slot_data, list)) else slot_data
|
||||
self.num_el_per_condition.append(current_cond_num_el)
|
||||
|
||||
def initialize(self):
|
||||
"""
|
||||
Initialize the datasets tensors/LabelTensors/lists given the lists
|
||||
already filled
|
||||
"""
|
||||
logging.debug(f'Initialize dataset {self.__class__.__name__}')
|
||||
|
||||
if self.num_el_per_condition:
|
||||
self.condition_indices = torch.cat(
|
||||
[
|
||||
torch.tensor([i] * num_el_per_condition[i],
|
||||
torch.tensor([i] * self.num_el_per_condition[i],
|
||||
dtype=torch.uint8)
|
||||
for i in range(len(num_el_per_condition))
|
||||
for i in range(len(self.num_el_per_condition))
|
||||
],
|
||||
dim=0,
|
||||
dim=0
|
||||
)
|
||||
for slot in self.__slots__:
|
||||
current_attribute = getattr(self, slot)
|
||||
if all(isinstance(a, LabelTensor) for a in current_attribute):
|
||||
setattr(self, slot, LabelTensor.vstack(current_attribute))
|
||||
else:
|
||||
self.condition_indices = torch.tensor([], dtype=torch.uint8)
|
||||
for slot in self.__slots__:
|
||||
setattr(self, slot, torch.tensor([]))
|
||||
self.device = device
|
||||
self.initialized = True
|
||||
|
||||
def __len__(self):
|
||||
"""
|
||||
:return: Number of elements in the dataset
|
||||
"""
|
||||
return len(getattr(self, self.__slots__[0]))
|
||||
|
||||
def __getattribute__(self, item):
|
||||
attribute = super().__getattribute__(item)
|
||||
if isinstance(attribute,
|
||||
LabelTensor) and attribute.dtype == torch.float32:
|
||||
attribute = attribute.to(device=self.device).requires_grad_()
|
||||
return attribute
|
||||
|
||||
def __getitem__(self, idx):
|
||||
if isinstance(idx, str):
|
||||
return getattr(self, idx).to(self.device)
|
||||
if isinstance(idx, slice):
|
||||
to_return_list = []
|
||||
for i in self.__slots__:
|
||||
to_return_list.append(getattr(self, i)[idx].to(self.device))
|
||||
return to_return_list
|
||||
"""
|
||||
:param idx:
|
||||
:return:
|
||||
"""
|
||||
if not isinstance(idx, (tuple, list, slice, int)):
|
||||
raise IndexError("Invalid index")
|
||||
tensors = []
|
||||
for attribute in self.__slots__:
|
||||
tensor = getattr(self, attribute)
|
||||
if isinstance(attribute, (LabelTensor, torch.Tensor)):
|
||||
tensors.append(tensor.__getitem__(idx))
|
||||
elif isinstance(attribute, list):
|
||||
if isinstance(idx, (list, tuple)):
|
||||
tensor = [tensor[i] for i in idx]
|
||||
tensors.append(tensor)
|
||||
return tensors
|
||||
|
||||
if isinstance(idx, (tuple, list)):
|
||||
if (len(idx) == 2 and isinstance(idx[0], str)
|
||||
and isinstance(idx[1], (list, slice))):
|
||||
tensor = getattr(self, idx[0])
|
||||
return tensor[[idx[1]]].to(self.device)
|
||||
if all(isinstance(x, int) for x in idx):
|
||||
to_return_list = []
|
||||
for i in self.__slots__:
|
||||
to_return_list.append(
|
||||
getattr(self, i)[[idx]].to(self.device))
|
||||
return to_return_list
|
||||
|
||||
raise ValueError(f'Invalid index {idx}')
|
||||
def apply_shuffle(self, indices):
|
||||
for slot in self.__slots__:
|
||||
if slot != 'equation':
|
||||
attribute = getattr(self, slot)
|
||||
if isinstance(attribute, (LabelTensor, torch.Tensor)):
|
||||
setattr(self, 'slot', attribute[[indices]])
|
||||
if isinstance(attribute, list):
|
||||
setattr(self, 'slot', [attribute[i] for i in indices])
|
||||
|
||||
Reference in New Issue
Block a user