Improve efficiency and refact LabelTensor, codacy correction and fix bug in PinaBatch
This commit is contained in:
committed by
Nicola Demo
parent
ccc5f5a322
commit
ea3d1924e7
@@ -4,7 +4,8 @@ This module provide basic data management functionalities
|
||||
|
||||
import math
|
||||
import torch
|
||||
from lightning import LightningDataModule
|
||||
import logging
|
||||
from pytorch_lightning import LightningDataModule
|
||||
from .sample_dataset import SamplePointDataset
|
||||
from .supervised_dataset import SupervisedDataset
|
||||
from .unsupervised_dataset import UnsupervisedDataset
|
||||
@@ -22,8 +23,9 @@ class PinaDataModule(LightningDataModule):
|
||||
problem,
|
||||
device,
|
||||
train_size=.7,
|
||||
test_size=.2,
|
||||
eval_size=.1,
|
||||
test_size=.1,
|
||||
val_size=.2,
|
||||
predict_size=0.,
|
||||
batch_size=None,
|
||||
shuffle=True,
|
||||
datasets=None):
|
||||
@@ -37,37 +39,64 @@ class PinaDataModule(LightningDataModule):
|
||||
:param batch_size: batch size used for training
|
||||
:param datasets: list of datasets objects
|
||||
"""
|
||||
logging.debug('Start initialization of Pina DataModule')
|
||||
logging.info('Start initialization of Pina DataModule')
|
||||
super().__init__()
|
||||
dataset_classes = [SupervisedDataset, UnsupervisedDataset,
|
||||
SamplePointDataset]
|
||||
self.problem = problem
|
||||
self.device = device
|
||||
self.dataset_classes = [SupervisedDataset, UnsupervisedDataset,
|
||||
SamplePointDataset]
|
||||
if datasets is None:
|
||||
self.datasets = [DatasetClass(problem, device) for DatasetClass in
|
||||
dataset_classes]
|
||||
self.datasets = None
|
||||
else:
|
||||
self.datasets = datasets
|
||||
|
||||
self.split_length = []
|
||||
self.split_names = []
|
||||
self.loader_functions = {}
|
||||
self.batch_size = batch_size
|
||||
self.condition_names = problem.collector.conditions_name
|
||||
|
||||
if train_size > 0:
|
||||
self.split_names.append('train')
|
||||
self.split_length.append(train_size)
|
||||
self.loader_functions['train_dataloader'] = lambda: PinaDataLoader(
|
||||
self.splits['train'], self.batch_size, self.condition_names)
|
||||
if test_size > 0:
|
||||
self.split_length.append(test_size)
|
||||
self.split_names.append('test')
|
||||
if eval_size > 0:
|
||||
self.split_length.append(eval_size)
|
||||
self.split_names.append('eval')
|
||||
|
||||
self.batch_size = batch_size
|
||||
self.condition_names = None
|
||||
self.loader_functions['test_dataloader'] = lambda: PinaDataLoader(
|
||||
self.splits['test'], self.batch_size, self.condition_names)
|
||||
if val_size > 0:
|
||||
self.split_length.append(val_size)
|
||||
self.split_names.append('val')
|
||||
self.loader_functions['val_dataloader'] = lambda: PinaDataLoader(
|
||||
self.splits['val'], self.batch_size,
|
||||
self.condition_names)
|
||||
if predict_size > 0:
|
||||
self.split_length.append(predict_size)
|
||||
self.split_names.append('predict')
|
||||
self.loader_functions[
|
||||
'predict_dataloader'] = lambda: PinaDataLoader(
|
||||
self.splits['predict'], self.batch_size,
|
||||
self.condition_names)
|
||||
self.splits = {k: {} for k in self.split_names}
|
||||
self.shuffle = shuffle
|
||||
|
||||
for k, v in self.loader_functions.items():
|
||||
setattr(self, k, v)
|
||||
|
||||
def prepare_data(self):
|
||||
if self.datasets is None:
|
||||
self._create_datasets()
|
||||
|
||||
def setup(self, stage=None):
|
||||
"""
|
||||
Perform the splitting of the dataset
|
||||
"""
|
||||
self.extract_conditions()
|
||||
logging.debug('Start setup of Pina DataModule obj')
|
||||
if self.datasets is None:
|
||||
self._create_datasets()
|
||||
if stage == 'fit' or stage is None:
|
||||
for dataset in self.datasets:
|
||||
if len(dataset) > 0:
|
||||
@@ -82,53 +111,6 @@ class PinaDataModule(LightningDataModule):
|
||||
else:
|
||||
raise ValueError("stage must be either 'fit' or 'test'")
|
||||
|
||||
def extract_conditions(self):
|
||||
"""
|
||||
Extract conditions from dataset and update condition indices
|
||||
"""
|
||||
# Extract number of conditions
|
||||
n_conditions = 0
|
||||
for dataset in self.datasets:
|
||||
if n_conditions != 0:
|
||||
dataset.condition_names = {
|
||||
key + n_conditions: value
|
||||
for key, value in dataset.condition_names.items()
|
||||
}
|
||||
n_conditions += len(dataset.condition_names)
|
||||
|
||||
self.condition_names = {
|
||||
key: value
|
||||
for dataset in self.datasets
|
||||
for key, value in dataset.condition_names.items()
|
||||
}
|
||||
|
||||
def train_dataloader(self):
|
||||
"""
|
||||
Return the training dataloader for the dataset
|
||||
:return: data loader
|
||||
:rtype: PinaDataLoader
|
||||
"""
|
||||
return PinaDataLoader(self.splits['train'], self.batch_size,
|
||||
self.condition_names)
|
||||
|
||||
def test_dataloader(self):
|
||||
"""
|
||||
Return the testing dataloader for the dataset
|
||||
:return: data loader
|
||||
:rtype: PinaDataLoader
|
||||
"""
|
||||
return PinaDataLoader(self.splits['test'], self.batch_size,
|
||||
self.condition_names)
|
||||
|
||||
def eval_dataloader(self):
|
||||
"""
|
||||
Return the evaluation dataloader for the dataset
|
||||
:return: data loader
|
||||
:rtype: PinaDataLoader
|
||||
"""
|
||||
return PinaDataLoader(self.splits['eval'], self.batch_size,
|
||||
self.condition_names)
|
||||
|
||||
@staticmethod
|
||||
def dataset_split(dataset, lengths, seed=None, shuffle=True):
|
||||
"""
|
||||
@@ -141,30 +123,28 @@ class PinaDataModule(LightningDataModule):
|
||||
:rtype: PinaSubset
|
||||
"""
|
||||
if sum(lengths) - 1 < 1e-3:
|
||||
len_dataset = len(dataset)
|
||||
lengths = [
|
||||
int(math.floor(len(dataset) * length)) for length in lengths
|
||||
int(math.floor(len_dataset * length)) for length in lengths
|
||||
]
|
||||
|
||||
remainder = len(dataset) - sum(lengths)
|
||||
for i in range(remainder):
|
||||
lengths[i % len(lengths)] += 1
|
||||
elif sum(lengths) - 1 >= 1e-3:
|
||||
raise ValueError(f"Sum of lengths is {sum(lengths)} less than 1")
|
||||
|
||||
if sum(lengths) != len(dataset):
|
||||
raise ValueError("Sum of lengths is not equal to dataset length")
|
||||
|
||||
if shuffle:
|
||||
if seed is not None:
|
||||
generator = torch.Generator()
|
||||
generator.manual_seed(seed)
|
||||
indices = torch.randperm(sum(lengths),
|
||||
generator=generator).tolist()
|
||||
generator=generator)
|
||||
else:
|
||||
indices = torch.arange(sum(lengths)).tolist()
|
||||
else:
|
||||
indices = torch.arange(0, sum(lengths), 1,
|
||||
dtype=torch.uint8).tolist()
|
||||
indices = torch.randperm(sum(lengths))
|
||||
dataset.apply_shuffle(indices)
|
||||
|
||||
indices = torch.arange(0, sum(lengths), 1,
|
||||
dtype=torch.uint8).tolist()
|
||||
offsets = [
|
||||
sum(lengths[:i]) if i > 0 else 0 for i in range(len(lengths))
|
||||
]
|
||||
@@ -172,3 +152,29 @@ class PinaDataModule(LightningDataModule):
|
||||
PinaSubset(dataset, indices[offset:offset + length])
|
||||
for offset, length in zip(offsets, lengths)
|
||||
]
|
||||
|
||||
def _create_datasets(self):
|
||||
"""
|
||||
Create the dataset objects putting data
|
||||
"""
|
||||
logging.debug('Dataset creation in PinaDataModule obj')
|
||||
collector = self.problem.collector
|
||||
batching_dim = self.problem.batching_dimension
|
||||
datasets_slots = [i.__slots__ for i in self.dataset_classes]
|
||||
self.datasets = [dataset(device=self.device) for dataset in
|
||||
self.dataset_classes]
|
||||
logging.debug('Filling datasets in PinaDataModule obj')
|
||||
for name, data in collector.data_collections.items():
|
||||
keys = list(data.keys())
|
||||
idx = [key for key, val in collector.conditions_name.items() if
|
||||
val == name]
|
||||
for i, slot in enumerate(datasets_slots):
|
||||
if slot == keys:
|
||||
self.datasets[i].add_points(data, idx[0], batching_dim)
|
||||
continue
|
||||
datasets = []
|
||||
for dataset in self.datasets:
|
||||
if not dataset.empty:
|
||||
dataset.initialize()
|
||||
datasets.append(dataset)
|
||||
self.datasets = datasets
|
||||
|
||||
Reference in New Issue
Block a user