Improve efficiency and refact LabelTensor, codacy correction and fix bug in PinaBatch

This commit is contained in:
FilippoOlivo
2024-10-23 15:04:28 +02:00
committed by Nicola Demo
parent ccc5f5a322
commit ea3d1924e7
13 changed files with 496 additions and 395 deletions

View File

@@ -1,5 +1,5 @@
""" Module for LabelTensor """
from copy import deepcopy, copy
from copy import copy
import torch
from torch import Tensor
@@ -8,21 +8,29 @@ def issubset(a, b):
"""
Check if a is a subset of b.
"""
return set(a).issubset(set(b))
if isinstance(a, list) and isinstance(b, list):
return set(a).issubset(set(b))
elif isinstance(a, range) and isinstance(b, range):
return a.start <= b.start and a.stop >= b.stop
else:
return False
class LabelTensor(torch.Tensor):
"""Torch tensor with a label for any column."""
@staticmethod
def __new__(cls, x, labels, *args, **kwargs):
return super().__new__(cls, x, *args, **kwargs)
def __new__(cls, x, labels, full=True, *args, **kwargs):
if isinstance(x, LabelTensor):
return x
else:
return super().__new__(cls, x, *args, **kwargs)
@property
def tensor(self):
return self.as_subclass(Tensor)
def __init__(self, x, labels):
def __init__(self, x, labels, full=False):
"""
Construct a `LabelTensor` by passing a dict of the labels
@@ -34,8 +42,17 @@ class LabelTensor(torch.Tensor):
"""
self.dim_names = None
self.full = full
self.labels = labels
@classmethod
def __internal_init__(cls, x, labels, dim_names ,full=False, *args, **kwargs):
lt = cls.__new__(cls, x, labels, full, *args, **kwargs)
lt._labels = labels
lt.full = full
lt.dim_names = dim_names
return lt
@property
def labels(self):
"""Property decorator for labels
@@ -43,12 +60,29 @@ class LabelTensor(torch.Tensor):
:return: labels of self
:rtype: list
"""
return self._labels[self.tensor.ndim - 1]['dof']
if self.ndim - 1 in self._labels.keys():
return self._labels[self.ndim - 1]['dof']
@property
def full_labels(self):
"""Property decorator for labels
:return: labels of self
:rtype: list
"""
to_return_dict = {}
shape_tensor = self.shape
for i in range(len(shape_tensor)):
if i in self._labels.keys():
to_return_dict[i] = self._labels[i]
else:
to_return_dict[i] = {'dof': range(shape_tensor[i]), 'name': i}
return to_return_dict
@property
def stored_labels(self):
"""Property decorator for labels
:return: labels of self
:rtype: list
"""
@@ -62,26 +96,77 @@ class LabelTensor(torch.Tensor):
:param labels: Labels to assign to the class variable _labels.
:type: labels: str | list(str) | dict
"""
if hasattr(self, 'labels') is False:
self.init_labels()
if not hasattr(self, '_labels'):
self._labels = {}
if isinstance(labels, dict):
self.update_labels_from_dict(labels)
self._init_labels_from_dict(labels)
elif isinstance(labels, list):
self.update_labels_from_list(labels)
self._init_labels_from_list(labels)
elif isinstance(labels, str):
labels = [labels]
self.update_labels_from_list(labels)
self._init_labels_from_list(labels)
else:
raise ValueError("labels must be list, dict or string.")
self.set_names()
def _init_labels_from_dict(self, labels):
"""
Update the internal label representation according to the values
passed as input.
:param labels: The label(s) to update.
:type labels: dict
:raises ValueError: dof list contain duplicates or number of dof
does not match with tensor shape
"""
tensor_shape = self.shape
if hasattr(self, 'full') and self.full:
labels = {i: labels[i] if i in labels else {'name': i} for i in
labels.keys()}
for k, v in labels.items():
# Init labels from str
if isinstance(v, str):
v = {'name': v, 'dof': range(tensor_shape[k])}
# Init labels from dict
elif isinstance(v, dict) and list(v.keys()) == ['name']:
# Init from dict with only name key
v['dof'] = range(tensor_shape[k])
# Init from dict with both name and dof keys
elif isinstance(v, dict) and sorted(list(v.keys())) == ['dof',
'name']:
dof_list = v['dof']
dof_len = len(dof_list)
if dof_len != len(set(dof_list)):
raise ValueError("dof must be unique")
if dof_len != tensor_shape[k]:
raise ValueError(
'Number of dof does not match tensor shape')
else:
ValueError('Illegal labels initialization')
# Perform update
self._labels[k] = v
def _init_labels_from_list(self, labels):
"""
Given a list of dof, this method update the internal label
representation
:param labels: The label(s) to update.
:type labels: list
"""
# Create a dict with labels
last_dim_labels = {
self.ndim - 1: {'dof': labels, 'name': self.ndim - 1}}
self._init_labels_from_dict(last_dim_labels)
def set_names(self):
labels = self.full_labels
labels = self.stored_labels
self.dim_names = {}
for dim in range(self.tensor.ndim):
for dim in labels.keys():
self.dim_names[labels[dim]['name']] = dim
def extract(self, label_to_extract):
def extract(self, labels_to_extract):
"""
Extract the subset of the original tensor by returning all the columns
corresponding to the passed ``label_to_extract``.
@@ -91,78 +176,68 @@ class LabelTensor(torch.Tensor):
:raises TypeError: Labels are not ``str``.
:raises ValueError: Label to extract is not in the labels ``list``.
"""
if isinstance(label_to_extract, (str, int)):
label_to_extract = [label_to_extract]
if isinstance(label_to_extract, (tuple, list)):
return self._extract_from_list(label_to_extract)
if isinstance(label_to_extract, dict):
return self._extract_from_dict(label_to_extract)
raise ValueError('labels_to_extract must be str or list or dict')
# Convert str/int to string
if isinstance(labels_to_extract, (str, int)):
labels_to_extract = [labels_to_extract]
def _extract_from_list(self, labels_to_extract):
# Store locally all necessary obj/variables
ndim = self.tensor.ndim
labels = self.full_labels
tensor = self.tensor
last_dim_label = self.labels
# Store useful variables
labels = self.stored_labels
stored_keys = labels.keys()
dim_names = self.dim_names
ndim = len(super().shape)
# Verify if all the labels in labels_to_extract are in last dimension
if set(labels_to_extract).issubset(last_dim_label) is False:
raise ValueError(
'Cannot extract a dof which is not in the original LabelTensor')
# Extract index to extract
idx_to_extract = [last_dim_label.index(i) for i in labels_to_extract]
# Perform extraction
new_tensor = tensor[..., idx_to_extract]
# Manage labels
new_labels = copy(labels)
last_dim_new_label = {ndim - 1: {
'dof': list(labels_to_extract),
'name': labels[ndim - 1]['name']
}}
new_labels.update(last_dim_new_label)
return LabelTensor(new_tensor, new_labels)
def _extract_from_dict(self, labels_to_extract):
labels = self.full_labels
tensor = self.tensor
ndim = tensor.ndim
new_labels = deepcopy(labels)
new_tensor = tensor
for k, _ in labels_to_extract.items():
idx_dim = self.dim_names[k]
dim_labels = labels[idx_dim]['dof']
if isinstance(labels_to_extract[k], (int, str)):
labels_to_extract[k] = [labels_to_extract[k]]
if set(labels_to_extract[k]).issubset(dim_labels) is False:
# Convert tuple/list to dict
if isinstance(labels_to_extract, (tuple, list)):
if not ndim - 1 in stored_keys:
raise ValueError(
'Cannot extract a dof which is not in the original '
'LabelTensor')
idx_to_extract = [dim_labels.index(i) for i in labels_to_extract[k]]
indexer = [slice(None)] * idx_dim + [idx_to_extract] + [
slice(None)] * (ndim - idx_dim - 1)
new_tensor = new_tensor[indexer]
dim_new_label = {idx_dim: {
'dof': labels_to_extract[k],
'name': labels[idx_dim]['name']
}}
new_labels.update(dim_new_label)
return LabelTensor(new_tensor, new_labels)
"LabelTensor does not have labels in last dimension")
name = labels[max(stored_keys)]['name']
labels_to_extract = {name: list(labels_to_extract)}
# If labels_to_extract is not dict then rise error
if not isinstance(labels_to_extract, dict):
raise ValueError('labels_to_extract must be str or list or dict')
# Make copy of labels (avoid issue in consistency)
updated_labels = {k: copy(v) for k, v in labels.items()}
# Initialize list used to perform extraction
extractor = [slice(None) for _ in range(ndim)]
# Loop over labels_to_extract dict
for k, v in labels_to_extract.items():
# If label is not find raise value error
idx_dim = dim_names.get(k)
if idx_dim is None:
raise ValueError(
'Cannot extract label with is not in original labels')
dim_labels = labels[idx_dim]['dof']
v = [v] if isinstance(v, (int, str)) else v
if not isinstance(v, range):
extractor[idx_dim] = [dim_labels.index(i) for i in v] if len(
v) > 1 else slice(dim_labels.index(v[0]),
dim_labels.index(v[0]) + 1)
else:
extractor[idx_dim] = slice(v.start, v.stop)
updated_labels.update({idx_dim: {'dof': v, 'name': k}})
tensor = self.tensor
tensor = tensor[extractor]
return LabelTensor.__internal_init__(tensor, updated_labels, dim_names)
def __str__(self):
"""
returns a string with the representation of the class
"""
s = ''
for key, value in self._labels.items():
s += f"{key}: {value}\n"
s += '\n'
s += super().__str__()
s += self.tensor.__str__()
return s
@staticmethod
@@ -174,55 +249,44 @@ class LabelTensor(torch.Tensor):
:param tensors: tensors to concatenate
:type tensors: list(LabelTensor)
:param dim: dimensions on which you want to perform the operation (default 0)
:param dim: dimensions on which you want to perform the operation
(default 0)
:type dim: int
:rtype: LabelTensor
:raises ValueError: either number dof or dimensions names differ
"""
if len(tensors) == 0:
return []
if len(tensors) == 1:
if len(tensors) == 1 or isinstance(tensors, LabelTensor):
return tensors[0]
new_labels_cat_dim = LabelTensor._check_validity_before_cat(tensors,
dim)
# Perform cat on tensors
new_tensor = torch.cat(tensors, dim=dim)
# Update labels
labels = tensors[0].full_labels
labels.pop(dim)
new_labels_cat_dim = new_labels_cat_dim if len(
set(new_labels_cat_dim)) == len(new_labels_cat_dim) \
else range(new_tensor.shape[dim])
labels[dim] = {'dof': new_labels_cat_dim,
'name': tensors[1].full_labels[dim]['name']}
return LabelTensor(new_tensor, labels)
labels = LabelTensor.__create_labels_cat(tensors,
dim)
return LabelTensor.__internal_init__(new_tensor, labels, tensors[0].dim_names)
@staticmethod
def _check_validity_before_cat(tensors, dim):
n_dims = tensors[0].ndim
new_labels_cat_dim = []
def __create_labels_cat(tensors, dim):
# Check if names and dof of the labels are the same in all dimensions
# except in dim
for i in range(n_dims):
name = tensors[0].full_labels[i]['name']
if i != dim:
dof = tensors[0].full_labels[i]['dof']
for tensor in tensors:
dof_to_check = tensor.full_labels[i]['dof']
name_to_check = tensor.full_labels[i]['name']
if dof != dof_to_check or name != name_to_check:
raise ValueError(
'dimensions must have the same dof and name')
else:
for tensor in tensors:
new_labels_cat_dim += tensor.full_labels[i]['dof']
name_to_check = tensor.full_labels[i]['name']
if name != name_to_check:
raise ValueError(
'Dimensions to concatenate must have the same name')
return new_labels_cat_dim
stored_labels = [tensor.stored_labels for tensor in tensors]
# check if:
# - labels dict have same keys
# - all labels are the same expect for dimension dim
if not all(all(stored_labels[i][k] == stored_labels[0][k]
for i in range(len(stored_labels)))
for k in stored_labels[0].keys() if k != dim):
raise RuntimeError('tensors must have the same shape and dof')
labels = {k: copy(v) for k, v in tensors[0].stored_labels.items()}
if dim in labels.keys():
last_dim_dof = [i for j in stored_labels for i in j[dim]['dof']]
labels[dim]['dof'] = last_dim_dof
return labels
def requires_grad_(self, mode=True):
lt = super().requires_grad_(mode)
@@ -251,52 +315,10 @@ class LabelTensor(torch.Tensor):
:return: A copy of the tensor.
:rtype: LabelTensor
"""
out = LabelTensor(super().clone(*args, **kwargs), self._labels)
labels = {k: copy(v) for k, v in self._labels.items()}
out = LabelTensor(super().clone(*args, **kwargs), labels)
return out
def init_labels(self):
self._labels = {
idx_: {
'dof': range(self.tensor.shape[idx_]),
'name': idx_
} for idx_ in range(self.tensor.ndim)
}
def update_labels_from_dict(self, labels):
"""
Update the internal label representation according to the values passed
as input.
:param labels: The label(s) to update.
:type labels: dict
:raises ValueError: dof list contain duplicates or number of dof does
not match with tensor shape
"""
tensor_shape = self.tensor.shape
# Check dimensionality
for k, v in labels.items():
if len(v['dof']) != len(set(v['dof'])):
raise ValueError("dof must be unique")
if len(v['dof']) != tensor_shape[k]:
raise ValueError(
'Number of dof does not match with tensor dimension')
# Perform update
self._labels.update(labels)
def update_labels_from_list(self, labels):
"""
Given a list of dof, this method update the internal label
representation
:param labels: The label(s) to update.
:type labels: list
"""
# Create a dict with labels
last_dim_labels = {
self.tensor.ndim - 1: {'dof': labels, 'name': self.tensor.ndim - 1}}
self.update_labels_from_dict(last_dim_labels)
@staticmethod
def summation(tensors):
if len(tensors) == 0:
@@ -304,25 +326,30 @@ class LabelTensor(torch.Tensor):
if len(tensors) == 1:
return tensors[0]
# Collect all labels
labels = tensors[0].full_labels
# Check labels of all the tensors in each dimension
for j in range(tensors[0].ndim):
for i in range(1, len(tensors)):
if labels[j] != tensors[i].full_labels[j]:
labels.pop(j)
break
# Sum tensors
if not all(tensor.shape == tensors[0].shape for tensor in tensors) or \
not all(tensor.full_labels[i] == tensors[0].full_labels[i] for
tensor in tensors for i in range(tensors[0].ndim - 1)):
raise RuntimeError('Tensors must have the same shape and labels')
last_dim_labels = []
data = torch.zeros(tensors[0].tensor.shape)
for tensor in tensors:
data += tensor.tensor
new_tensor = LabelTensor(data, labels)
return new_tensor
last_dim_labels.append(tensor.labels)
last_dim_labels = ['+'.join(items) for items in zip(*last_dim_labels)]
labels = {k: copy(v) for k, v in tensors[0].stored_labels.items()}
labels.update({tensors[0].ndim - 1: {'dof': last_dim_labels,
'name': tensors[0].name}})
return LabelTensor(data, labels)
def append(self, tensor, mode='std'):
if mode == 'std':
# Call cat on last dimension
new_label_tensor = LabelTensor.cat([self, tensor],
dim=self.tensor.ndim - 1)
dim=self.ndim - 1)
elif mode == 'cross':
# Crete tensor and call cat on last dimension
tensor1 = self
@@ -333,7 +360,7 @@ class LabelTensor(torch.Tensor):
tensor2 = LabelTensor(tensor2.repeat_interleave(n1, dim=0),
labels=tensor2.labels)
new_label_tensor = LabelTensor.cat([tensor1, tensor2],
dim=self.tensor.ndim - 1)
dim=self.ndim - 1)
else:
raise ValueError('mode must be either "std" or "cross"')
return new_label_tensor
@@ -357,97 +384,76 @@ class LabelTensor(torch.Tensor):
:param index:
:return:
"""
if isinstance(index, str) or (isinstance(index, (tuple, list)) and all(
isinstance(a, str) for a in index)):
return self.extract(index)
selected_lt = super().__getitem__(index)
if isinstance(index, (int, slice)):
return self._getitem_int_slice(index, selected_lt)
index = [index]
if len(index) == self.tensor.ndim:
return self._getitem_full_dim_indexing(index, selected_lt)
if index[0] == Ellipsis:
index = [slice(None)] * (self.ndim - 1) + [index[1]]
if isinstance(index, torch.Tensor) or (
isinstance(index, (tuple, list)) and all(
isinstance(x, int) for x in index)):
return self._getitem_permutation(index, selected_lt)
raise ValueError('Not recognized index type')
def _getitem_int_slice(self, index, selected_lt):
"""
:param index:
:param selected_lt:
:return:
"""
if selected_lt.ndim == 1:
selected_lt = selected_lt.reshape(1, -1)
if hasattr(self, "labels"):
new_labels = deepcopy(self.full_labels)
to_update_dof = new_labels[0]['dof'][index]
to_update_dof = to_update_dof if isinstance(to_update_dof, (
tuple, list, range)) else [to_update_dof]
new_labels.update(
{0: {'dof': to_update_dof, 'name': new_labels[0]['name']}}
)
selected_lt.labels = new_labels
return selected_lt
def _getitem_full_dim_indexing(self, index, selected_lt):
new_labels = {}
old_labels = self.full_labels
if selected_lt.ndim == 1:
selected_lt = selected_lt.reshape(-1, 1)
new_labels = deepcopy(old_labels)
new_labels[1].update({'dof': old_labels[1]['dof'][index[1]],
'name': old_labels[1]['name']})
idx = 0
for j in range(selected_lt.ndim):
if not isinstance(index[j], int):
if hasattr(self, "labels"):
new_labels.update(
self._update_label_for_dim(old_labels, index[j], idx))
idx += 1
selected_lt.labels = new_labels
return selected_lt
def _getitem_permutation(self, index, selected_lt):
new_labels = deepcopy(self.full_labels)
new_labels.update(self._update_label_for_dim(self.full_labels, index,
0))
selected_lt.labels = self.labels
labels = {k: copy(v) for k, v in self.stored_labels.items()}
for j, idx in enumerate(index):
if isinstance(idx, int):
selected_lt = selected_lt.unsqueeze(j)
if j in labels.keys() and idx != slice(None):
self._update_single_label(labels, labels, idx, j)
selected_lt = LabelTensor.__internal_init__(selected_lt, labels,
self.dim_names)
return selected_lt
@staticmethod
def _update_label_for_dim(old_labels, index, dim):
def _update_single_label(old_labels, to_update_labels, index, dim):
"""
TODO
:param old_labels:
:param index:
:param dim:
:param old_labels: labels from which retrieve data
:param to_update_labels: labels to update
:param index: index of dof to retain
:param dim: label index
:return:
"""
old_dof = old_labels[dim]['dof']
if not isinstance(index, (int, slice)) and len(index) == len(
old_dof) and isinstance(old_dof, range):
return
if isinstance(index, torch.Tensor):
index = index.nonzero()
index = index.nonzero(as_tuple=True)[
0] if index.dtype == torch.bool else index.tolist()
if isinstance(index, list):
return {dim: {'dof': [old_labels[dim]['dof'][i] for i in index],
'name': old_labels[dim]['name']}}
to_update_labels.update({dim: {
'dof': [old_dof[i] for i in index],
'name': old_labels[dim]['name']}})
else:
return {dim: {'dof': old_labels[dim]['dof'][index],
'name': old_labels[dim]['name']}}
to_update_labels.update({dim: {'dof': old_dof[index],
'name': old_labels[dim]['name']}})
def sort_labels(self, dim=None):
def argsort(lst):
def arg_sort(lst):
return sorted(range(len(lst)), key=lambda x: lst[x])
if dim is None:
dim = self.tensor.ndim - 1
labels = self.full_labels[dim]['dof']
sorted_index = argsort(labels)
indexer = [slice(None)] * self.tensor.ndim
dim = self.ndim - 1
labels = self.stored_labels[dim]['dof']
sorted_index = arg_sort(labels)
indexer = [slice(None)] * self.ndim
indexer[dim] = sorted_index
new_labels = deepcopy(self.full_labels)
new_labels[dim] = {'dof': sorted(labels),
'name': new_labels[dim]['name']}
return LabelTensor(self.tensor[indexer], new_labels)
return self.__getitem__(indexer)
def __deepcopy__(self, memo):
from copy import deepcopy
cls = self.__class__
result = cls(deepcopy(self.tensor), deepcopy(self.stored_labels))
return result
def permute(self, *dims):
tensor = super().permute(*dims)
stored_labels = self.stored_labels
keys_list = list(*dims)
labels = {keys_list.index(k): copy(stored_labels[k]) for k in
stored_labels.keys()}
return LabelTensor.__internal_init__(tensor, labels, self.dim_names)