Fix bug and improve __getitem__
This commit is contained in:
committed by
Nicola Demo
parent
3e30450e9a
commit
eb146ea2ea
@@ -22,9 +22,6 @@ class LabelTensor(torch.Tensor):
|
|||||||
def tensor(self):
|
def tensor(self):
|
||||||
return self.as_subclass(Tensor)
|
return self.as_subclass(Tensor)
|
||||||
|
|
||||||
def __len__(self) -> int:
|
|
||||||
return super().__len__()
|
|
||||||
|
|
||||||
def __init__(self, x, labels):
|
def __init__(self, x, labels):
|
||||||
"""
|
"""
|
||||||
Construct a `LabelTensor` by passing a dict of the labels
|
Construct a `LabelTensor` by passing a dict of the labels
|
||||||
@@ -75,7 +72,7 @@ class LabelTensor(torch.Tensor):
|
|||||||
labels = [labels]
|
labels = [labels]
|
||||||
self.update_labels_from_list(labels)
|
self.update_labels_from_list(labels)
|
||||||
else:
|
else:
|
||||||
raise ValueError(f"labels must be list, dict or string.")
|
raise ValueError("labels must be list, dict or string.")
|
||||||
self.set_names()
|
self.set_names()
|
||||||
|
|
||||||
def set_names(self):
|
def set_names(self):
|
||||||
@@ -98,9 +95,8 @@ class LabelTensor(torch.Tensor):
|
|||||||
label_to_extract = [label_to_extract]
|
label_to_extract = [label_to_extract]
|
||||||
if isinstance(label_to_extract, (tuple, list)):
|
if isinstance(label_to_extract, (tuple, list)):
|
||||||
return self._extract_from_list(label_to_extract)
|
return self._extract_from_list(label_to_extract)
|
||||||
elif isinstance(label_to_extract, dict):
|
if isinstance(label_to_extract, dict):
|
||||||
return self._extract_from_dict(label_to_extract)
|
return self._extract_from_dict(label_to_extract)
|
||||||
else:
|
|
||||||
raise ValueError('labels_to_extract must be str or list or dict')
|
raise ValueError('labels_to_extract must be str or list or dict')
|
||||||
|
|
||||||
def _extract_from_list(self, labels_to_extract):
|
def _extract_from_list(self, labels_to_extract):
|
||||||
@@ -112,7 +108,8 @@ class LabelTensor(torch.Tensor):
|
|||||||
|
|
||||||
# Verify if all the labels in labels_to_extract are in last dimension
|
# Verify if all the labels in labels_to_extract are in last dimension
|
||||||
if set(labels_to_extract).issubset(last_dim_label) is False:
|
if set(labels_to_extract).issubset(last_dim_label) is False:
|
||||||
raise ValueError('Cannot extract a dof which is not in the original LabelTensor')
|
raise ValueError(
|
||||||
|
'Cannot extract a dof which is not in the original LabelTensor')
|
||||||
|
|
||||||
# Extract index to extract
|
# Extract index to extract
|
||||||
idx_to_extract = [last_dim_label.index(i) for i in labels_to_extract]
|
idx_to_extract = [last_dim_label.index(i) for i in labels_to_extract]
|
||||||
@@ -142,9 +139,12 @@ class LabelTensor(torch.Tensor):
|
|||||||
if isinstance(labels_to_extract[k], (int, str)):
|
if isinstance(labels_to_extract[k], (int, str)):
|
||||||
labels_to_extract[k] = [labels_to_extract[k]]
|
labels_to_extract[k] = [labels_to_extract[k]]
|
||||||
if set(labels_to_extract[k]).issubset(dim_labels) is False:
|
if set(labels_to_extract[k]).issubset(dim_labels) is False:
|
||||||
raise ValueError('Cannot extract a dof which is not in the original LabelTensor')
|
raise ValueError(
|
||||||
|
'Cannot extract a dof which is not in the original '
|
||||||
|
'LabelTensor')
|
||||||
idx_to_extract = [dim_labels.index(i) for i in labels_to_extract[k]]
|
idx_to_extract = [dim_labels.index(i) for i in labels_to_extract[k]]
|
||||||
indexer = [slice(None)] * idx_dim + [idx_to_extract] + [slice(None)] * (ndim - idx_dim - 1)
|
indexer = [slice(None)] * idx_dim + [idx_to_extract] + [
|
||||||
|
slice(None)] * (ndim - idx_dim - 1)
|
||||||
new_tensor = new_tensor[indexer]
|
new_tensor = new_tensor[indexer]
|
||||||
dim_new_label = {idx_dim: {
|
dim_new_label = {idx_dim: {
|
||||||
'dof': labels_to_extract[k],
|
'dof': labels_to_extract[k],
|
||||||
@@ -168,7 +168,8 @@ class LabelTensor(torch.Tensor):
|
|||||||
@staticmethod
|
@staticmethod
|
||||||
def cat(tensors, dim=0):
|
def cat(tensors, dim=0):
|
||||||
"""
|
"""
|
||||||
Stack a list of tensors. For example, given a tensor `a` of shape `(n,m,dof)` and a tensor `b` of dimension `(n',m,dof)`
|
Stack a list of tensors. For example, given a tensor `a` of shape
|
||||||
|
`(n,m,dof)` and a tensor `b` of dimension `(n',m,dof)`
|
||||||
the resulting tensor is of shape `(n+n',m,dof)`
|
the resulting tensor is of shape `(n+n',m,dof)`
|
||||||
|
|
||||||
:param tensors: tensors to concatenate
|
:param tensors: tensors to concatenate
|
||||||
@@ -182,7 +183,8 @@ class LabelTensor(torch.Tensor):
|
|||||||
return []
|
return []
|
||||||
if len(tensors) == 1:
|
if len(tensors) == 1:
|
||||||
return tensors[0]
|
return tensors[0]
|
||||||
new_labels_cat_dim = LabelTensor._check_validity_before_cat(tensors, dim)
|
new_labels_cat_dim = LabelTensor._check_validity_before_cat(tensors,
|
||||||
|
dim)
|
||||||
|
|
||||||
# Perform cat on tensors
|
# Perform cat on tensors
|
||||||
new_tensor = torch.cat(tensors, dim=dim)
|
new_tensor = torch.cat(tensors, dim=dim)
|
||||||
@@ -190,7 +192,8 @@ class LabelTensor(torch.Tensor):
|
|||||||
# Update labels
|
# Update labels
|
||||||
labels = tensors[0].full_labels
|
labels = tensors[0].full_labels
|
||||||
labels.pop(dim)
|
labels.pop(dim)
|
||||||
new_labels_cat_dim = new_labels_cat_dim if len(set(new_labels_cat_dim)) == len(new_labels_cat_dim) \
|
new_labels_cat_dim = new_labels_cat_dim if len(
|
||||||
|
set(new_labels_cat_dim)) == len(new_labels_cat_dim) \
|
||||||
else range(new_tensor.shape[dim])
|
else range(new_tensor.shape[dim])
|
||||||
labels[dim] = {'dof': new_labels_cat_dim,
|
labels[dim] = {'dof': new_labels_cat_dim,
|
||||||
'name': tensors[1].full_labels[dim]['name']}
|
'name': tensors[1].full_labels[dim]['name']}
|
||||||
@@ -200,7 +203,8 @@ class LabelTensor(torch.Tensor):
|
|||||||
def _check_validity_before_cat(tensors, dim):
|
def _check_validity_before_cat(tensors, dim):
|
||||||
n_dims = tensors[0].ndim
|
n_dims = tensors[0].ndim
|
||||||
new_labels_cat_dim = []
|
new_labels_cat_dim = []
|
||||||
# Check if names and dof of the labels are the same in all dimensions except in dim
|
# Check if names and dof of the labels are the same in all dimensions
|
||||||
|
# except in dim
|
||||||
for i in range(n_dims):
|
for i in range(n_dims):
|
||||||
name = tensors[0].full_labels[i]['name']
|
name = tensors[0].full_labels[i]['name']
|
||||||
if i != dim:
|
if i != dim:
|
||||||
@@ -209,13 +213,15 @@ class LabelTensor(torch.Tensor):
|
|||||||
dof_to_check = tensor.full_labels[i]['dof']
|
dof_to_check = tensor.full_labels[i]['dof']
|
||||||
name_to_check = tensor.full_labels[i]['name']
|
name_to_check = tensor.full_labels[i]['name']
|
||||||
if dof != dof_to_check or name != name_to_check:
|
if dof != dof_to_check or name != name_to_check:
|
||||||
raise ValueError('dimensions must have the same dof and name')
|
raise ValueError(
|
||||||
|
'dimensions must have the same dof and name')
|
||||||
else:
|
else:
|
||||||
for tensor in tensors:
|
for tensor in tensors:
|
||||||
new_labels_cat_dim += tensor.full_labels[i]['dof']
|
new_labels_cat_dim += tensor.full_labels[i]['dof']
|
||||||
name_to_check = tensor.full_labels[i]['name']
|
name_to_check = tensor.full_labels[i]['name']
|
||||||
if name != name_to_check:
|
if name != name_to_check:
|
||||||
raise ValueError('Dimensions to concatenate must have the same name')
|
raise ValueError(
|
||||||
|
'Dimensions to concatenate must have the same name')
|
||||||
return new_labels_cat_dim
|
return new_labels_cat_dim
|
||||||
|
|
||||||
def requires_grad_(self, mode=True):
|
def requires_grad_(self, mode=True):
|
||||||
@@ -259,11 +265,13 @@ class LabelTensor(torch.Tensor):
|
|||||||
|
|
||||||
def update_labels_from_dict(self, labels):
|
def update_labels_from_dict(self, labels):
|
||||||
"""
|
"""
|
||||||
Update the internal label representation according to the values passed as input.
|
Update the internal label representation according to the values passed
|
||||||
|
as input.
|
||||||
|
|
||||||
:param labels: The label(s) to update.
|
:param labels: The label(s) to update.
|
||||||
:type labels: dict
|
:type labels: dict
|
||||||
:raises ValueError: dof list contain duplicates or number of dof does not match with tensor shape
|
:raises ValueError: dof list contain duplicates or number of dof does
|
||||||
|
not match with tensor shape
|
||||||
"""
|
"""
|
||||||
tensor_shape = self.tensor.shape
|
tensor_shape = self.tensor.shape
|
||||||
# Check dimensionality
|
# Check dimensionality
|
||||||
@@ -271,19 +279,22 @@ class LabelTensor(torch.Tensor):
|
|||||||
if len(v['dof']) != len(set(v['dof'])):
|
if len(v['dof']) != len(set(v['dof'])):
|
||||||
raise ValueError("dof must be unique")
|
raise ValueError("dof must be unique")
|
||||||
if len(v['dof']) != tensor_shape[k]:
|
if len(v['dof']) != tensor_shape[k]:
|
||||||
raise ValueError('Number of dof does not match with tensor dimension')
|
raise ValueError(
|
||||||
|
'Number of dof does not match with tensor dimension')
|
||||||
# Perform update
|
# Perform update
|
||||||
self._labels.update(labels)
|
self._labels.update(labels)
|
||||||
|
|
||||||
def update_labels_from_list(self, labels):
|
def update_labels_from_list(self, labels):
|
||||||
"""
|
"""
|
||||||
Given a list of dof, this method update the internal label representation
|
Given a list of dof, this method update the internal label
|
||||||
|
representation
|
||||||
|
|
||||||
:param labels: The label(s) to update.
|
:param labels: The label(s) to update.
|
||||||
:type labels: list
|
:type labels: list
|
||||||
"""
|
"""
|
||||||
# Create a dict with labels
|
# Create a dict with labels
|
||||||
last_dim_labels = {self.tensor.ndim - 1: {'dof': labels, 'name': self.tensor.ndim - 1}}
|
last_dim_labels = {
|
||||||
|
self.tensor.ndim - 1: {'dof': labels, 'name': self.tensor.ndim - 1}}
|
||||||
self.update_labels_from_dict(last_dim_labels)
|
self.update_labels_from_dict(last_dim_labels)
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
@@ -302,15 +313,16 @@ class LabelTensor(torch.Tensor):
|
|||||||
break
|
break
|
||||||
# Sum tensors
|
# Sum tensors
|
||||||
data = torch.zeros(tensors[0].tensor.shape)
|
data = torch.zeros(tensors[0].tensor.shape)
|
||||||
for i in range(len(tensors)):
|
for tensor in tensors:
|
||||||
data += tensors[i].tensor
|
data += tensor.tensor
|
||||||
new_tensor = LabelTensor(data, labels)
|
new_tensor = LabelTensor(data, labels)
|
||||||
return new_tensor
|
return new_tensor
|
||||||
|
|
||||||
def append(self, tensor, mode='std'):
|
def append(self, tensor, mode='std'):
|
||||||
if mode == 'std':
|
if mode == 'std':
|
||||||
# Call cat on last dimension
|
# Call cat on last dimension
|
||||||
new_label_tensor = LabelTensor.cat([self, tensor], dim=self.tensor.ndim - 1)
|
new_label_tensor = LabelTensor.cat([self, tensor],
|
||||||
|
dim=self.tensor.ndim - 1)
|
||||||
elif mode == 'cross':
|
elif mode == 'cross':
|
||||||
# Crete tensor and call cat on last dimension
|
# Crete tensor and call cat on last dimension
|
||||||
tensor1 = self
|
tensor1 = self
|
||||||
@@ -318,8 +330,10 @@ class LabelTensor(torch.Tensor):
|
|||||||
n1 = tensor1.shape[0]
|
n1 = tensor1.shape[0]
|
||||||
n2 = tensor2.shape[0]
|
n2 = tensor2.shape[0]
|
||||||
tensor1 = LabelTensor(tensor1.repeat(n2, 1), labels=tensor1.labels)
|
tensor1 = LabelTensor(tensor1.repeat(n2, 1), labels=tensor1.labels)
|
||||||
tensor2 = LabelTensor(tensor2.repeat_interleave(n1, dim=0), labels=tensor2.labels)
|
tensor2 = LabelTensor(tensor2.repeat_interleave(n1, dim=0),
|
||||||
new_label_tensor = LabelTensor.cat([tensor1, tensor2], dim=self.tensor.ndim - 1)
|
labels=tensor2.labels)
|
||||||
|
new_label_tensor = LabelTensor.cat([tensor1, tensor2],
|
||||||
|
dim=self.tensor.ndim - 1)
|
||||||
else:
|
else:
|
||||||
raise ValueError('mode must be either "std" or "cross"')
|
raise ValueError('mode must be either "std" or "cross"')
|
||||||
return new_label_tensor
|
return new_label_tensor
|
||||||
@@ -339,47 +353,90 @@ class LabelTensor(torch.Tensor):
|
|||||||
|
|
||||||
def __getitem__(self, index):
|
def __getitem__(self, index):
|
||||||
"""
|
"""
|
||||||
Return a copy of the selected tensor.
|
TODO: Complete docstring
|
||||||
|
:param index:
|
||||||
|
:return:
|
||||||
"""
|
"""
|
||||||
|
|
||||||
if isinstance(index, str) or (isinstance(index, (tuple, list)) and all(isinstance(a, str) for a in index)):
|
if isinstance(index, str) or (isinstance(index, (tuple, list)) and all(
|
||||||
|
isinstance(a, str) for a in index)):
|
||||||
return self.extract(index)
|
return self.extract(index)
|
||||||
|
|
||||||
selected_lt = super().__getitem__(index)
|
selected_lt = super().__getitem__(index)
|
||||||
|
|
||||||
try:
|
if isinstance(index, (int, slice)):
|
||||||
len_index = len(index)
|
return self._getitem_int_slice(index, selected_lt)
|
||||||
except TypeError:
|
|
||||||
len_index = 1
|
|
||||||
|
|
||||||
if isinstance(index, int) or len_index == 1:
|
if len(index) == self.tensor.ndim:
|
||||||
|
return self._getitem_full_dim_indexing(index, selected_lt)
|
||||||
|
|
||||||
|
if isinstance(index, torch.Tensor) or (
|
||||||
|
isinstance(index, (tuple, list)) and all(
|
||||||
|
isinstance(x, int) for x in index)):
|
||||||
|
return self._getitem_permutation(index, selected_lt)
|
||||||
|
raise ValueError('Not recognized index type')
|
||||||
|
|
||||||
|
def _getitem_int_slice(self, index, selected_lt):
|
||||||
|
"""
|
||||||
|
:param index:
|
||||||
|
:param selected_lt:
|
||||||
|
:return:
|
||||||
|
"""
|
||||||
if selected_lt.ndim == 1:
|
if selected_lt.ndim == 1:
|
||||||
selected_lt = selected_lt.reshape(1, -1)
|
selected_lt = selected_lt.reshape(1, -1)
|
||||||
if hasattr(self, "labels"):
|
if hasattr(self, "labels"):
|
||||||
new_labels = deepcopy(self.full_labels)
|
new_labels = deepcopy(self.full_labels)
|
||||||
new_labels.pop(0)
|
to_update_dof = new_labels[0]['dof'][index]
|
||||||
|
to_update_dof = to_update_dof if isinstance(to_update_dof, (
|
||||||
|
tuple, list, range)) else [to_update_dof]
|
||||||
|
new_labels.update(
|
||||||
|
{0: {'dof': to_update_dof, 'name': new_labels[0]['name']}}
|
||||||
|
)
|
||||||
selected_lt.labels = new_labels
|
selected_lt.labels = new_labels
|
||||||
elif len(index) == self.tensor.ndim:
|
return selected_lt
|
||||||
new_labels = deepcopy(self.full_labels)
|
|
||||||
|
def _getitem_full_dim_indexing(self, index, selected_lt):
|
||||||
|
new_labels = {}
|
||||||
|
old_labels = self.full_labels
|
||||||
if selected_lt.ndim == 1:
|
if selected_lt.ndim == 1:
|
||||||
selected_lt = selected_lt.reshape(-1, 1)
|
selected_lt = selected_lt.reshape(-1, 1)
|
||||||
|
new_labels = deepcopy(old_labels)
|
||||||
|
new_labels[1].update({'dof': old_labels[1]['dof'][index[1]],
|
||||||
|
'name': old_labels[1]['name']})
|
||||||
|
idx = 0
|
||||||
for j in range(selected_lt.ndim):
|
for j in range(selected_lt.ndim):
|
||||||
|
if not isinstance(index[j], int):
|
||||||
if hasattr(self, "labels"):
|
if hasattr(self, "labels"):
|
||||||
if isinstance(index[j], list):
|
new_labels.update(
|
||||||
new_labels.update({j: {'dof': [new_labels[j]['dof'][i] for i in index[1]],
|
self._update_label_for_dim(old_labels, index[j], idx))
|
||||||
'name': new_labels[j]['name']}})
|
idx += 1
|
||||||
else:
|
|
||||||
new_labels.update({j: {'dof': new_labels[j]['dof'][index[j]],
|
|
||||||
'name': new_labels[j]['name']}})
|
|
||||||
|
|
||||||
selected_lt.labels = new_labels
|
selected_lt.labels = new_labels
|
||||||
else:
|
|
||||||
new_labels = deepcopy(self.full_labels)
|
|
||||||
new_labels.update({0: {'dof': list[index], 'name': new_labels[0]['name']}})
|
|
||||||
selected_lt.labels = self.labels
|
|
||||||
|
|
||||||
return selected_lt
|
return selected_lt
|
||||||
|
|
||||||
|
def _getitem_permutation(self, index, selected_lt):
|
||||||
|
|
||||||
|
new_labels = deepcopy(self.full_labels)
|
||||||
|
new_labels.update(self._update_label_for_dim(self.full_labels, index,
|
||||||
|
0))
|
||||||
|
selected_lt.labels = self.labels
|
||||||
|
return selected_lt
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def _update_label_for_dim(old_labels, index, dim):
|
||||||
|
"""
|
||||||
|
TODO
|
||||||
|
:param old_labels:
|
||||||
|
:param index:
|
||||||
|
:param dim:
|
||||||
|
:return:
|
||||||
|
"""
|
||||||
|
if isinstance(index, list):
|
||||||
|
return {dim: {'dof': [old_labels[dim]['dof'][i] for i in index],
|
||||||
|
'name': old_labels[dim]['name']}}
|
||||||
|
else:
|
||||||
|
return {dim: {'dof': old_labels[dim]['dof'][index],
|
||||||
|
'name': old_labels[dim]['name']}}
|
||||||
|
|
||||||
|
|
||||||
def sort_labels(self, dim=None):
|
def sort_labels(self, dim=None):
|
||||||
def argsort(lst):
|
def argsort(lst):
|
||||||
return sorted(range(len(lst)), key=lambda x: lst[x])
|
return sorted(range(len(lst)), key=lambda x: lst[x])
|
||||||
@@ -391,5 +448,6 @@ class LabelTensor(torch.Tensor):
|
|||||||
indexer = [slice(None)] * self.tensor.ndim
|
indexer = [slice(None)] * self.tensor.ndim
|
||||||
indexer[dim] = sorted_index
|
indexer[dim] = sorted_index
|
||||||
new_labels = deepcopy(self.full_labels)
|
new_labels = deepcopy(self.full_labels)
|
||||||
new_labels[dim] = {'dof': sorted(labels), 'name': new_labels[dim]['name']}
|
new_labels[dim] = {'dof': sorted(labels),
|
||||||
|
'name': new_labels[dim]['name']}
|
||||||
return LabelTensor(self.tensor[indexer], new_labels)
|
return LabelTensor(self.tensor[indexer], new_labels)
|
||||||
|
|||||||
Reference in New Issue
Block a user