add models and layers backward test
This commit is contained in:
@@ -56,6 +56,21 @@ def test_forward_extract_int():
|
||||
aggregator='*')
|
||||
model(data)
|
||||
|
||||
def test_backward_extract_int():
|
||||
data = torch.rand((20, 3))
|
||||
branch_net = FeedForward(input_dimensions=1, output_dimensions=10)
|
||||
trunk_net = FeedForward(input_dimensions=2, output_dimensions=10)
|
||||
model = DeepONet(branch_net=branch_net,
|
||||
trunk_net=trunk_net,
|
||||
input_indeces_branch_net=[0],
|
||||
input_indeces_trunk_net=[1, 2],
|
||||
reduction='+',
|
||||
aggregator='*')
|
||||
data.requires_grad = True
|
||||
model(data)
|
||||
l=torch.mean(model(data))
|
||||
l.backward()
|
||||
assert data._grad.shape == torch.Size([20,3])
|
||||
|
||||
def test_forward_extract_str_wrong():
|
||||
branch_net = FeedForward(input_dimensions=1, output_dimensions=10)
|
||||
@@ -68,3 +83,20 @@ def test_forward_extract_str_wrong():
|
||||
aggregator='*')
|
||||
with pytest.raises(RuntimeError):
|
||||
model(data)
|
||||
|
||||
def test_backward_extract_str_wrong():
|
||||
data = torch.rand((20, 3))
|
||||
branch_net = FeedForward(input_dimensions=1, output_dimensions=10)
|
||||
trunk_net = FeedForward(input_dimensions=2, output_dimensions=10)
|
||||
model = DeepONet(branch_net=branch_net,
|
||||
trunk_net=trunk_net,
|
||||
input_indeces_branch_net=['a'],
|
||||
input_indeces_trunk_net=['b', 'c'],
|
||||
reduction='+',
|
||||
aggregator='*')
|
||||
data.requires_grad = True
|
||||
with pytest.raises(RuntimeError):
|
||||
model(data)
|
||||
l=torch.mean(model(data))
|
||||
l.backward()
|
||||
assert data._grad.shape == torch.Size([20,3])
|
||||
|
||||
@@ -35,3 +35,12 @@ def test_forward():
|
||||
fnn = FeedForward(dim_in, dim_out)
|
||||
output_ = fnn(data)
|
||||
assert output_.shape == (data.shape[0], dim_out)
|
||||
|
||||
def test_backward():
|
||||
dim_in, dim_out = 3, 2
|
||||
fnn = FeedForward(dim_in, dim_out)
|
||||
data.requires_grad = True
|
||||
output_ = fnn(data)
|
||||
l=torch.mean(output_)
|
||||
l.backward()
|
||||
assert data._grad.shape == torch.Size([20,3])
|
||||
|
||||
@@ -60,6 +60,24 @@ def test_1d_forward():
|
||||
assert out.shape == torch.Size([batch_size, resolution[0], output_channels])
|
||||
|
||||
|
||||
def test_1d_backward():
|
||||
input_channels = 1
|
||||
input_ = torch.rand(batch_size, resolution[0], input_channels)
|
||||
lifting_net = torch.nn.Linear(input_channels, lifting_dim)
|
||||
projecting_net = torch.nn.Linear(60, output_channels)
|
||||
fno = FNO(lifting_net=lifting_net,
|
||||
projecting_net=projecting_net,
|
||||
n_modes=5,
|
||||
dimensions=1,
|
||||
inner_size=60,
|
||||
n_layers=2)
|
||||
input_.requires_grad = True
|
||||
out = fno(input_)
|
||||
l = torch.mean(out)
|
||||
l.backward()
|
||||
assert input_.grad.shape == torch.Size([batch_size, resolution[0], input_channels])
|
||||
|
||||
|
||||
def test_2d_forward():
|
||||
input_channels = 2
|
||||
input_ = torch.rand(batch_size, resolution[0], resolution[1],
|
||||
@@ -77,6 +95,27 @@ def test_2d_forward():
|
||||
[batch_size, resolution[0], resolution[1], output_channels])
|
||||
|
||||
|
||||
def test_2d_backward():
|
||||
input_channels = 2
|
||||
input_ = torch.rand(batch_size, resolution[0], resolution[1],
|
||||
input_channels)
|
||||
lifting_net = torch.nn.Linear(input_channels, lifting_dim)
|
||||
projecting_net = torch.nn.Linear(60, output_channels)
|
||||
fno = FNO(lifting_net=lifting_net,
|
||||
projecting_net=projecting_net,
|
||||
n_modes=5,
|
||||
dimensions=2,
|
||||
inner_size=60,
|
||||
n_layers=2)
|
||||
input_.requires_grad = True
|
||||
out = fno(input_)
|
||||
l = torch.mean(out)
|
||||
l.backward()
|
||||
assert input_.grad.shape == torch.Size([
|
||||
batch_size, resolution[0], resolution[1], input_channels
|
||||
])
|
||||
|
||||
|
||||
def test_3d_forward():
|
||||
input_channels = 3
|
||||
input_ = torch.rand(batch_size, resolution[0], resolution[1], resolution[2],
|
||||
@@ -93,3 +132,24 @@ def test_3d_forward():
|
||||
assert out.shape == torch.Size([
|
||||
batch_size, resolution[0], resolution[1], resolution[2], output_channels
|
||||
])
|
||||
|
||||
|
||||
def test_3d_backward():
|
||||
input_channels = 3
|
||||
input_ = torch.rand(batch_size, resolution[0], resolution[1], resolution[2],
|
||||
input_channels)
|
||||
lifting_net = torch.nn.Linear(input_channels, lifting_dim)
|
||||
projecting_net = torch.nn.Linear(60, output_channels)
|
||||
fno = FNO(lifting_net=lifting_net,
|
||||
projecting_net=projecting_net,
|
||||
n_modes=5,
|
||||
dimensions=3,
|
||||
inner_size=60,
|
||||
n_layers=2)
|
||||
input_.requires_grad = True
|
||||
out = fno(input_)
|
||||
l = torch.mean(out)
|
||||
l.backward()
|
||||
assert input_.grad.shape == torch.Size([
|
||||
batch_size, resolution[0], resolution[1], resolution[2], input_channels
|
||||
])
|
||||
|
||||
@@ -36,6 +36,22 @@ def test_forward_extract_str():
|
||||
model(input_)
|
||||
|
||||
|
||||
def test_backward_extract_str():
|
||||
data = torch.rand((20, 3))
|
||||
data.requires_grad = True
|
||||
input_vars = ['a', 'b', 'c']
|
||||
input_ = LabelTensor(data, input_vars)
|
||||
branch_net1 = FeedForward(input_dimensions=1, output_dimensions=10)
|
||||
branch_net2 = FeedForward(input_dimensions=1, output_dimensions=10)
|
||||
trunk_net = FeedForward(input_dimensions=1, output_dimensions=10)
|
||||
networks = {branch_net1: ['a'], branch_net2: ['b'], trunk_net: ['c']}
|
||||
model = MIONet(networks=networks, reduction='+', aggregator='*')
|
||||
model(input_)
|
||||
l = torch.mean(model(input_))
|
||||
l.backward()
|
||||
assert data._grad.shape == torch.Size([20,3])
|
||||
|
||||
|
||||
def test_forward_extract_int():
|
||||
branch_net1 = FeedForward(input_dimensions=1, output_dimensions=10)
|
||||
branch_net2 = FeedForward(input_dimensions=1, output_dimensions=10)
|
||||
@@ -45,6 +61,20 @@ def test_forward_extract_int():
|
||||
model(data)
|
||||
|
||||
|
||||
def test_backward_extract_int():
|
||||
data = torch.rand((20, 3))
|
||||
data.requires_grad = True
|
||||
branch_net1 = FeedForward(input_dimensions=1, output_dimensions=10)
|
||||
branch_net2 = FeedForward(input_dimensions=1, output_dimensions=10)
|
||||
trunk_net = FeedForward(input_dimensions=1, output_dimensions=10)
|
||||
networks = {branch_net1: [0], branch_net2: [1], trunk_net: [2]}
|
||||
model = MIONet(networks=networks, reduction='+', aggregator='*')
|
||||
model(data)
|
||||
l = torch.mean(model(data))
|
||||
l.backward()
|
||||
assert data._grad.shape == torch.Size([20,3])
|
||||
|
||||
|
||||
def test_forward_extract_str_wrong():
|
||||
branch_net1 = FeedForward(input_dimensions=1, output_dimensions=10)
|
||||
branch_net2 = FeedForward(input_dimensions=1, output_dimensions=10)
|
||||
@@ -53,3 +83,18 @@ def test_forward_extract_str_wrong():
|
||||
model = MIONet(networks=networks, reduction='+', aggregator='*')
|
||||
with pytest.raises(RuntimeError):
|
||||
model(data)
|
||||
|
||||
|
||||
def test_backward_extract_str_wrong():
|
||||
data = torch.rand((20, 3))
|
||||
data.requires_grad = True
|
||||
branch_net1 = FeedForward(input_dimensions=1, output_dimensions=10)
|
||||
branch_net2 = FeedForward(input_dimensions=1, output_dimensions=10)
|
||||
trunk_net = FeedForward(input_dimensions=1, output_dimensions=10)
|
||||
networks = {branch_net1: ['a'], branch_net2: ['b'], trunk_net: ['c']}
|
||||
model = MIONet(networks=networks, reduction='+', aggregator='*')
|
||||
with pytest.raises(RuntimeError):
|
||||
model(data)
|
||||
l = torch.mean(model(data))
|
||||
l.backward()
|
||||
assert data._grad.shape == torch.Size([20,3])
|
||||
|
||||
@@ -35,3 +35,15 @@ def test_forward():
|
||||
|
||||
with pytest.raises(AssertionError):
|
||||
net(data)
|
||||
|
||||
def test_backward():
|
||||
net = Network(model=torchmodel,
|
||||
input_variables=['x', 'y', 'z'],
|
||||
output_variables=['a', 'b', 'c', 'd'],
|
||||
extra_features=None)
|
||||
data = torch.rand((20, 3))
|
||||
data.requires_grad = True
|
||||
out = net.torchmodel(data)
|
||||
l = torch.mean(out)
|
||||
l.backward()
|
||||
assert data._grad.shape == torch.Size([20, 3])
|
||||
@@ -24,3 +24,14 @@ def test_forward():
|
||||
x = torch.rand(10, 2)
|
||||
model = ResidualFeedForward(input_dimensions=2, output_dimensions=1)
|
||||
model(x)
|
||||
|
||||
|
||||
def test_backward():
|
||||
x = torch.rand(10, 2)
|
||||
x.requires_grad = True
|
||||
model = ResidualFeedForward(input_dimensions=2, output_dimensions=1)
|
||||
model(x)
|
||||
l = torch.mean(model(x))
|
||||
l.backward()
|
||||
assert x.grad.shape == torch.Size([10, 2])
|
||||
|
||||
Reference in New Issue
Block a user