add models and layers backward test

This commit is contained in:
cyberguli
2024-02-19 23:09:10 +01:00
committed by Nicola Demo
parent cbb43a5392
commit eb1af0b50e
10 changed files with 308 additions and 1 deletions

View File

@@ -36,6 +36,22 @@ def test_forward_extract_str():
model(input_)
def test_backward_extract_str():
data = torch.rand((20, 3))
data.requires_grad = True
input_vars = ['a', 'b', 'c']
input_ = LabelTensor(data, input_vars)
branch_net1 = FeedForward(input_dimensions=1, output_dimensions=10)
branch_net2 = FeedForward(input_dimensions=1, output_dimensions=10)
trunk_net = FeedForward(input_dimensions=1, output_dimensions=10)
networks = {branch_net1: ['a'], branch_net2: ['b'], trunk_net: ['c']}
model = MIONet(networks=networks, reduction='+', aggregator='*')
model(input_)
l = torch.mean(model(input_))
l.backward()
assert data._grad.shape == torch.Size([20,3])
def test_forward_extract_int():
branch_net1 = FeedForward(input_dimensions=1, output_dimensions=10)
branch_net2 = FeedForward(input_dimensions=1, output_dimensions=10)
@@ -45,6 +61,20 @@ def test_forward_extract_int():
model(data)
def test_backward_extract_int():
data = torch.rand((20, 3))
data.requires_grad = True
branch_net1 = FeedForward(input_dimensions=1, output_dimensions=10)
branch_net2 = FeedForward(input_dimensions=1, output_dimensions=10)
trunk_net = FeedForward(input_dimensions=1, output_dimensions=10)
networks = {branch_net1: [0], branch_net2: [1], trunk_net: [2]}
model = MIONet(networks=networks, reduction='+', aggregator='*')
model(data)
l = torch.mean(model(data))
l.backward()
assert data._grad.shape == torch.Size([20,3])
def test_forward_extract_str_wrong():
branch_net1 = FeedForward(input_dimensions=1, output_dimensions=10)
branch_net2 = FeedForward(input_dimensions=1, output_dimensions=10)
@@ -53,3 +83,18 @@ def test_forward_extract_str_wrong():
model = MIONet(networks=networks, reduction='+', aggregator='*')
with pytest.raises(RuntimeError):
model(data)
def test_backward_extract_str_wrong():
data = torch.rand((20, 3))
data.requires_grad = True
branch_net1 = FeedForward(input_dimensions=1, output_dimensions=10)
branch_net2 = FeedForward(input_dimensions=1, output_dimensions=10)
trunk_net = FeedForward(input_dimensions=1, output_dimensions=10)
networks = {branch_net1: ['a'], branch_net2: ['b'], trunk_net: ['c']}
model = MIONet(networks=networks, reduction='+', aggregator='*')
with pytest.raises(RuntimeError):
model(data)
l = torch.mean(model(data))
l.backward()
assert data._grad.shape == torch.Size([20,3])