update examples

This commit is contained in:
Dario Coscia
2023-05-29 15:34:23 +02:00
committed by Nicola Demo
parent 37e9658211
commit eb531747e5
11 changed files with 331 additions and 216 deletions

View File

@@ -5,13 +5,26 @@ from pina.operators import grad
from pina import Condition
from pina.span import Span
# ===================================================== #
# #
# This script implements the one dimensional Burger #
# problem. The Burgers1D class is defined inheriting #
# from TimeDependentProblem, SpatialProblem and we #
# denote: #
# u --> field variable #
# x --> spatial variable #
# t --> temporal variable #
# #
# ===================================================== #
class Burgers1D(TimeDependentProblem, SpatialProblem):
# assign output/ spatial and temporal variables
output_variables = ['u']
spatial_domain = Span({'x': [-1, 1]})
temporal_domain = Span({'t': [0, 1]})
# define the burger equation
def burger_equation(input_, output_):
du = grad(output_, input_)
ddu = grad(du, input_, components=['dudx'])
@@ -21,17 +34,20 @@ class Burgers1D(TimeDependentProblem, SpatialProblem):
(0.01/torch.pi)*ddu.extract(['ddudxdx'])
)
# define nill dirichlet boundary conditions
def nil_dirichlet(input_, output_):
u_expected = 0.0
return output_.extract(['u']) - u_expected
# define initial condition
def initial_condition(input_, output_):
u_expected = -torch.sin(torch.pi*input_.extract(['x']))
return output_.extract(['u']) - u_expected
# problem condition statement
conditions = {
'gamma1': Condition(Span({'x': -1, 't': [0, 1]}), nil_dirichlet),
'gamma2': Condition(Span({'x': 1, 't': [0, 1]}), nil_dirichlet),
't0': Condition(Span({'x': [-1, 1], 't': 0}), initial_condition),
'D': Condition(Span({'x': [-1, 1], 't': [0, 1]}), burger_equation),
'gamma1': Condition(location=Span({'x': -1, 't': [0, 1]}), function=nil_dirichlet),
'gamma2': Condition(location=Span({'x': 1, 't': [0, 1]}), function=nil_dirichlet),
't0': Condition(location=Span({'x': [-1, 1], 't': 0}), function=initial_condition),
'D': Condition(location=Span({'x': [-1, 1], 't': [0, 1]}), function=burger_equation),
}

View File

@@ -1,45 +1,47 @@
import torch
from pina.problem import Problem
from pina.segment import Segment
from pina.cube import Cube
from pina.problem2d import Problem2D
# import torch
# from pina.problem import Problem
# from pina.segment import Segment
# from pina.cube import Cube
# from pina.problem2d import Problem2D
xmin, xmax, ymin, ymax = -1, 1, -1, 1
# xmin, xmax, ymin, ymax = -1, 1, -1, 1
class EllipticOptimalControl(Problem2D):
# class EllipticOptimalControl(Problem2D):
def __init__(self, alpha=1):
# def __init__(self, alpha=1):
def term1(input_, output_):
grad_p = self.grad(output_.extract(['p']), input_)
gradgrad_p_x1 = self.grad(grad_p.extract(['x1']), input_)
gradgrad_p_x2 = self.grad(grad_p.extract(['x2']), input_)
yd = 2.0
return output_.extract(['y']) - yd - (gradgrad_p_x1.extract(['x1']) + gradgrad_p_x2.extract(['x2']))
# def term1(input_, output_):
# grad_p = self.grad(output_.extract(['p']), input_)
# gradgrad_p_x1 = self.grad(grad_p.extract(['x1']), input_)
# gradgrad_p_x2 = self.grad(grad_p.extract(['x2']), input_)
# yd = 2.0
# return output_.extract(['y']) - yd - (gradgrad_p_x1.extract(['x1']) + gradgrad_p_x2.extract(['x2']))
def term2(input_, output_):
grad_y = self.grad(output_.extract(['y']), input_)
gradgrad_y_x1 = self.grad(grad_y.extract(['x1']), input_)
gradgrad_y_x2 = self.grad(grad_y.extract(['x2']), input_)
return - (gradgrad_y_x1.extract(['x1']) + gradgrad_y_x2.extract(['x2'])) - output_.extract(['u'])
# def term2(input_, output_):
# grad_y = self.grad(output_.extract(['y']), input_)
# gradgrad_y_x1 = self.grad(grad_y.extract(['x1']), input_)
# gradgrad_y_x2 = self.grad(grad_y.extract(['x2']), input_)
# return - (gradgrad_y_x1.extract(['x1']) + gradgrad_y_x2.extract(['x2'])) - output_.extract(['u'])
def term3(input_, output_):
return output_.extract(['p']) - output_.extract(['u'])*alpha
# def term3(input_, output_):
# return output_.extract(['p']) - output_.extract(['u'])*alpha
def nil_dirichlet(input_, output_):
y_value = 0.0
p_value = 0.0
return torch.abs(output_.extract(['y']) - y_value) + torch.abs(output_.extract(['p']) - p_value)
# def nil_dirichlet(input_, output_):
# y_value = 0.0
# p_value = 0.0
# return torch.abs(output_.extract(['y']) - y_value) + torch.abs(output_.extract(['p']) - p_value)
self.conditions = {
'gamma1': {'location': Segment((xmin, ymin), (xmax, ymin)), 'func': nil_dirichlet},
'gamma2': {'location': Segment((xmax, ymin), (xmax, ymax)), 'func': nil_dirichlet},
'gamma3': {'location': Segment((xmax, ymax), (xmin, ymax)), 'func': nil_dirichlet},
'gamma4': {'location': Segment((xmin, ymax), (xmin, ymin)), 'func': nil_dirichlet},
'D1': {'location': Cube([[xmin, xmax], [ymin, ymax]]), 'func': [term1, term2, term3]},
}
# self.conditions = {
# 'gamma1': {'location': Segment((xmin, ymin), (xmax, ymin)), 'func': nil_dirichlet},
# 'gamma2': {'location': Segment((xmax, ymin), (xmax, ymax)), 'func': nil_dirichlet},
# 'gamma3': {'location': Segment((xmax, ymax), (xmin, ymax)), 'func': nil_dirichlet},
# 'gamma4': {'location': Segment((xmin, ymax), (xmin, ymin)), 'func': nil_dirichlet},
# 'D1': {'location': Cube([[xmin, xmax], [ymin, ymax]]), 'func': [term1, term2, term3]},
# }
self.input_variables = ['x1', 'x2']
self.output_variables = ['u', 'p', 'y']
self.spatial_domain = Cube([[xmin, xmax], [xmin, xmax]])
# self.input_variables = ['x1', 'x2']
# self.output_variables = ['u', 'p', 'y']
# self.spatial_domain = Cube([[xmin, xmax], [xmin, xmax]])
raise NotImplementedError('not available problem at the moment...')

View File

@@ -0,0 +1,46 @@
from pina.problem import SpatialProblem
from pina import Condition, Span
from pina.operators import grad
import torch
# ===================================================== #
# #
# This script implements a simple first order ode. #
# The FirstOrderODE class is defined inheriting from #
# SpatialProblem. We denote: #
# y --> field variable #
# x --> spatial variable #
# #
# ===================================================== #
class FirstOrderODE(SpatialProblem):
# variable domain range
x_rng = [0, 5]
# field variable
output_variables = ['y']
# create domain
spatial_domain = Span({'x': x_rng})
# define the ode
def ode(input_, output_):
y = output_
x = input_
return grad(y, x) + y - x
# define initial conditions
def fixed(input_, output_):
exp_value = 1.
return output_ - exp_value
# define real solution
def solution(self, input_):
x = input_
return x - 1.0 + 2*torch.exp(-x)
# define problem conditions
conditions = {
'bc': Condition(location=Span({'x': x_rng[0]}), function=fixed),
'dd': Condition(location=Span({'x': x_rng}), function=ode),
}
truth_solution = solution

View File

@@ -1,53 +1,53 @@
import numpy as np
import torch
from pina.problem import Problem
from pina.segment import Segment
from pina.cube import Cube
from pina.problem2d import Problem2D
# import numpy as np
# import torch
# from pina.problem import Problem
# from pina.segment import Segment
# from pina.cube import Cube
# from pina.problem2d import Problem2D
xmin, xmax, ymin, ymax = -1, 1, -1, 1
# xmin, xmax, ymin, ymax = -1, 1, -1, 1
class ParametricEllipticOptimalControl(Problem2D):
# class ParametricEllipticOptimalControl(Problem2D):
def __init__(self, alpha=1):
# def __init__(self, alpha=1):
def term1(input_, param_, output_):
grad_p = self.grad(output_['p'], input_)
gradgrad_p_x1 = self.grad(grad_p['x1'], input_)
gradgrad_p_x2 = self.grad(grad_p['x2'], input_)
return output_['y'] - param_ - (gradgrad_p_x1['x1'] + gradgrad_p_x2['x2'])
# def term1(input_, param_, output_):
# grad_p = self.grad(output_['p'], input_)
# gradgrad_p_x1 = self.grad(grad_p['x1'], input_)
# gradgrad_p_x2 = self.grad(grad_p['x2'], input_)
# return output_['y'] - param_ - (gradgrad_p_x1['x1'] + gradgrad_p_x2['x2'])
def term2(input_, param_, output_):
grad_y = self.grad(output_['y'], input_)
gradgrad_y_x1 = self.grad(grad_y['x1'], input_)
gradgrad_y_x2 = self.grad(grad_y['x2'], input_)
return - (gradgrad_y_x1['x1'] + gradgrad_y_x2['x2']) - output_['u_param']
# def term2(input_, param_, output_):
# grad_y = self.grad(output_['y'], input_)
# gradgrad_y_x1 = self.grad(grad_y['x1'], input_)
# gradgrad_y_x2 = self.grad(grad_y['x2'], input_)
# return - (gradgrad_y_x1['x1'] + gradgrad_y_x2['x2']) - output_['u_param']
def term3(input_, param_, output_):
return output_['p'] - output_['u_param']*alpha
# def term3(input_, param_, output_):
# return output_['p'] - output_['u_param']*alpha
def term(input_, param_, output_):
return term1( input_, param_, output_) +term2( input_, param_, output_) + term3( input_, param_, output_)
# def term(input_, param_, output_):
# return term1( input_, param_, output_) +term2( input_, param_, output_) + term3( input_, param_, output_)
def nil_dirichlet(input_, param_, output_):
y_value = 0.0
p_value = 0.0
return torch.abs(output_['y'] - y_value) + torch.abs(output_['p'] - p_value)
# def nil_dirichlet(input_, param_, output_):
# y_value = 0.0
# p_value = 0.0
# return torch.abs(output_['y'] - y_value) + torch.abs(output_['p'] - p_value)
self.conditions = {
'gamma1': {'location': Segment((xmin, ymin), (xmax, ymin)), 'func': nil_dirichlet},
'gamma2': {'location': Segment((xmax, ymin), (xmax, ymax)), 'func': nil_dirichlet},
'gamma3': {'location': Segment((xmax, ymax), (xmin, ymax)), 'func': nil_dirichlet},
'gamma4': {'location': Segment((xmin, ymax), (xmin, ymin)), 'func': nil_dirichlet},
'D1': {'location': Cube([[xmin, xmax], [ymin, ymax]]), 'func': term},
#'D2': {'location': Cube([[0, 1], [0, 1]]), 'func': term2},
#'D3': {'location': Cube([[0, 1], [0, 1]]), 'func': term3}
}
self.input_variables = ['x1', 'x2']
self.output_variables = ['u', 'p', 'y']
self.parameters = ['mu']
self.spatial_domain = Cube([[xmin, xmax], [xmin, xmax]])
self.parameter_domain = np.array([[0.5, 3]])
# self.conditions = {
# 'gamma1': {'location': Segment((xmin, ymin), (xmax, ymin)), 'func': nil_dirichlet},
# 'gamma2': {'location': Segment((xmax, ymin), (xmax, ymax)), 'func': nil_dirichlet},
# 'gamma3': {'location': Segment((xmax, ymax), (xmin, ymax)), 'func': nil_dirichlet},
# 'gamma4': {'location': Segment((xmin, ymax), (xmin, ymin)), 'func': nil_dirichlet},
# 'D1': {'location': Cube([[xmin, xmax], [ymin, ymax]]), 'func': term},
# #'D2': {'location': Cube([[0, 1], [0, 1]]), 'func': term2},
# #'D3': {'location': Cube([[0, 1], [0, 1]]), 'func': term3}
# }
# self.input_variables = ['x1', 'x2']
# self.output_variables = ['u', 'p', 'y']
# self.parameters = ['mu']
# self.spatial_domain = Cube([[xmin, xmax], [xmin, xmax]])
# self.parameter_domain = np.array([[0.5, 3]])
raise NotImplementedError('not available problem at the moment...')

View File

@@ -5,22 +5,42 @@ from pina import Span, Condition
from pina.problem import SpatialProblem, ParametricProblem
from pina.operators import grad, nabla
# ===================================================== #
# #
# This script implements the two dimensional #
# Parametric Elliptic Optimal Control problem. #
# The ParametricEllipticOptimalControl class is #
# inherited from TimeDependentProblem, SpatialProblem #
# and we denote: #
# u --> field variable #
# p --> field variable #
# y --> field variable #
# x1, x2 --> spatial variables #
# mu, alpha --> problem parameters #
# #
# More info in https://arxiv.org/pdf/2110.13530.pdf #
# Section 4.2 of the article #
# ===================================================== #
class ParametricEllipticOptimalControl(SpatialProblem, ParametricProblem):
# setting spatial variables ranges
xmin, xmax, ymin, ymax = -1, 1, -1, 1
x_range = [xmin, xmax]
y_range = [ymin, ymax]
# setting parameters range
amin, amax = 0.0001, 1
mumin, mumax = 0.5, 3
mu_range = [mumin, mumax]
a_range = [amin, amax]
x_range = [xmin, xmax]
y_range = [ymin, ymax]
# setting field variables
output_variables = ['u', 'p', 'y']
# setting spatial and parameter domain
spatial_domain = Span({'x1': x_range, 'x2': y_range})
parameter_domain = Span({'mu': mu_range, 'alpha': a_range})
# equation terms as in https://arxiv.org/pdf/2110.13530.pdf
def term1(input_, output_):
laplace_p = nabla(output_, input_, components=['p'], d=['x1', 'x2'])
return output_.extract(['y']) - input_.extract(['mu']) - laplace_p
@@ -37,21 +57,22 @@ class ParametricEllipticOptimalControl(SpatialProblem, ParametricProblem):
p_exp = 0.0
return output_.extract(['p']) - p_exp
# setting problem condition formulation
conditions = {
'gamma1': Condition(
Span({'x1': x_range, 'x2': 1, 'mu': mu_range, 'alpha': a_range}),
[state_dirichlet, adj_dirichlet]),
location=Span({'x1': x_range, 'x2': 1, 'mu': mu_range, 'alpha': a_range}),
function=[state_dirichlet, adj_dirichlet]),
'gamma2': Condition(
Span({'x1': x_range, 'x2': -1, 'mu': mu_range, 'alpha': a_range}),
[state_dirichlet, adj_dirichlet]),
location=Span({'x1': x_range, 'x2': -1, 'mu': mu_range, 'alpha': a_range}),
function=[state_dirichlet, adj_dirichlet]),
'gamma3': Condition(
Span({'x1': 1, 'x2': y_range, 'mu': mu_range, 'alpha': a_range}),
[state_dirichlet, adj_dirichlet]),
location=Span({'x1': 1, 'x2': y_range, 'mu': mu_range, 'alpha': a_range}),
function=[state_dirichlet, adj_dirichlet]),
'gamma4': Condition(
Span({'x1': -1, 'x2': y_range, 'mu': mu_range, 'alpha': a_range}),
[state_dirichlet, adj_dirichlet]),
location=Span({'x1': -1, 'x2': y_range, 'mu': mu_range, 'alpha': a_range}),
function=[state_dirichlet, adj_dirichlet]),
'D': Condition(
Span({'x1': x_range, 'x2': y_range,
location=Span({'x1': x_range, 'x2': y_range,
'mu': mu_range, 'alpha': a_range}),
[term1, term2]),
}
function=[term1, term2]),
}

View File

@@ -4,37 +4,52 @@ from pina.problem import SpatialProblem, ParametricProblem
from pina.operators import nabla
from pina import Span, Condition
# ===================================================== #
# #
# This script implements the two dimensional #
# Parametric Poisson problem. The ParametricPoisson #
# class is defined inheriting from SpatialProblem and #
# ParametricProblem. We denote: #
# u --> field variable #
# x,y --> spatial variables #
# mu1, mu2 --> parameter variables #
# #
# ===================================================== #
class ParametricPoisson(SpatialProblem, ParametricProblem):
# assign output/ spatial and parameter variables
output_variables = ['u']
spatial_domain = Span({'x': [-1, 1], 'y': [-1, 1]})
parameter_domain = Span({'mu1': [-1, 1], 'mu2': [-1, 1]})
# define the laplace equation
def laplace_equation(input_, output_):
force_term = torch.exp(
- 2*(input_.extract(['x']) - input_.extract(['mu1']))**2
- 2*(input_.extract(['y']) - input_.extract(['mu2']))**2)
return nabla(output_.extract(['u']), input_) - force_term
# define nill dirichlet boundary conditions
def nil_dirichlet(input_, output_):
value = 0.0
return output_.extract(['u']) - value
# problem condition statement
conditions = {
'gamma1': Condition(
Span({'x': [-1, 1], 'y': 1, 'mu1': [-1, 1], 'mu2': [-1, 1]}),
nil_dirichlet),
location=Span({'x': [-1, 1], 'y': 1, 'mu1': [-1, 1], 'mu2': [-1, 1]}),
function=nil_dirichlet),
'gamma2': Condition(
Span({'x': [-1, 1], 'y': -1, 'mu1': [-1, 1], 'mu2': [-1, 1]}),
nil_dirichlet),
location=Span({'x': [-1, 1], 'y': -1, 'mu1': [-1, 1], 'mu2': [-1, 1]}),
function=nil_dirichlet),
'gamma3': Condition(
Span({'x': 1, 'y': [-1, 1], 'mu1': [-1, 1], 'mu2': [-1, 1]}),
nil_dirichlet),
location=Span({'x': 1, 'y': [-1, 1], 'mu1': [-1, 1], 'mu2': [-1, 1]}),
function=nil_dirichlet),
'gamma4': Condition(
Span({'x': -1, 'y': [-1, 1], 'mu1': [-1, 1], 'mu2': [-1, 1]}),
nil_dirichlet),
location=Span({'x': -1, 'y': [-1, 1], 'mu1': [-1, 1], 'mu2': [-1, 1]}),
function=nil_dirichlet),
'D': Condition(
Span({'x': [-1, 1], 'y': [-1, 1], 'mu1': [-1, 1], 'mu2': [-1, 1]}),
laplace_equation),
location=Span({'x': [-1, 1], 'y': [-1, 1], 'mu1': [-1, 1], 'mu2': [-1, 1]}),
function=laplace_equation),
}

View File

@@ -5,35 +5,49 @@ from pina.problem import SpatialProblem
from pina.operators import nabla
from pina import Condition, Span
# ===================================================== #
# #
# This script implements the two dimensional #
# Poisson problem. The Poisson class is defined #
# inheriting from SpatialProblem. We denote: #
# u --> field variable #
# x,y --> spatial variables #
# #
# ===================================================== #
class Poisson(SpatialProblem):
# assign output/ spatial variables
output_variables = ['u']
spatial_domain = Span({'x': [0, 1], 'y': [0, 1]})
# define the laplace equation
def laplace_equation(input_, output_):
force_term = (torch.sin(input_.extract(['x'])*torch.pi) *
torch.sin(input_.extract(['y'])*torch.pi))
nabla_u = nabla(output_.extract(['u']), input_)
return nabla_u - force_term
# define nill dirichlet boundary conditions
def nil_dirichlet(input_, output_):
value = 0.0
return output_.extract(['u']) - value
# problem condition statement
conditions = {
'gamma1': Condition(Span({'x': [0, 1], 'y': 1}), nil_dirichlet),
'gamma2': Condition(Span({'x': [0, 1], 'y': 0}), nil_dirichlet),
'gamma3': Condition(Span({'x': 1, 'y': [0, 1]}), nil_dirichlet),
'gamma4': Condition(Span({'x': 0, 'y': [0, 1]}), nil_dirichlet),
'D': Condition(Span({'x': [0, 1], 'y': [0, 1]}), laplace_equation),
'gamma1': Condition(location=Span({'x': [0, 1], 'y': 1}), function=nil_dirichlet),
'gamma2': Condition(location=Span({'x': [0, 1], 'y': 0}), function=nil_dirichlet),
'gamma3': Condition(location=Span({'x': 1, 'y': [0, 1]}),function=nil_dirichlet),
'gamma4': Condition(location=Span({'x': 0, 'y': [0, 1]}), function=nil_dirichlet),
'D': Condition(location=Span({'x': [0, 1], 'y': [0, 1]}), function=laplace_equation),
}
# real poisson solution
def poisson_sol(self, pts):
return -(
torch.sin(pts.extract(['x'])*torch.pi)*
torch.sin(pts.extract(['y'])*torch.pi)
)/(2*torch.pi**2)
#return -(np.sin(x*np.pi)*np.sin(y*np.pi))/(2*np.pi**2)
truth_solution = poisson_sol

View File

@@ -5,36 +5,62 @@ from pina.problem import SpatialProblem
from pina.operators import nabla, grad, div
from pina import Condition, Span, LabelTensor
# ===================================================== #
# #
# This script implements the two dimensional #
# Stokes problem. The Stokes class is defined #
# inheriting from SpatialProblem. We denote: #
# ux --> field variable velocity along x #
# uy --> field variable velocity along y #
# p --> field variable pressure #
# x,y --> spatial variables #
# #
# ===================================================== #
class Stokes(SpatialProblem):
# assign output/ spatial variables
output_variables = ['ux', 'uy', 'p']
spatial_domain = Span({'x': [-2, 2], 'y': [-1, 1]})
# define the momentum equation
def momentum(input_, output_):
nabla_ = torch.hstack((LabelTensor(nabla(output_.extract(['ux']), input_), ['x']),
LabelTensor(nabla(output_.extract(['uy']), input_), ['y'])))
return - nabla_ + grad(output_.extract(['p']), input_)
# define the continuity equation
def continuity(input_, output_):
return div(output_.extract(['ux', 'uy']), input_)
# define the inlet velocity
def inlet(input_, output_):
value = 2 * (1 - input_.extract(['y'])**2)
return output_.extract(['ux']) - value
# define the outlet pressure
def outlet(input_, output_):
value = 0.0
return output_.extract(['p']) - value
# define the wall condition
def wall(input_, output_):
value = 0.0
return output_.extract(['ux', 'uy']) - value
# problem condition statement
conditions = {
'gamma_top': Condition(Span({'x': [-2, 2], 'y': 1}), wall),
'gamma_bot': Condition(Span({'x': [-2, 2], 'y': -1}), wall),
'gamma_out': Condition(Span({'x': 2, 'y': [-1, 1]}), outlet),
'gamma_in': Condition(Span({'x': -2, 'y': [-1, 1]}), inlet),
'D': Condition(Span({'x': [-2, 2], 'y': [-1, 1]}), [momentum, continuity]),
'gamma_top': Condition(location=Span({'x': [-2, 2], 'y': 1}), function=wall),
'gamma_bot': Condition(location=Span({'x': [-2, 2], 'y': -1}), function=wall),
'gamma_out': Condition(location=Span({'x': 2, 'y': [-1, 1]}), function=outlet),
'gamma_in': Condition(location=Span({'x': -2, 'y': [-1, 1]}), function=inlet),
'D1': Condition(location=Span({'x': [-2, 2], 'y': [-1, 1]}), function=momentum),
'D2': Condition(location=Span({'x': [-2, 2], 'y': [-1, 1]}), function=continuity),
}
# conditions = {
# 'gamma_top': Condition(location=Span({'x': [-2, 2], 'y': 1}), function=wall),
# 'gamma_bot': Condition(location=Span({'x': [-2, 2], 'y': -1}), function=wall),
# 'gamma_out': Condition(location=Span({'x': 2, 'y': [-1, 1]}), function=outlet),
# 'gamma_in': Condition(location=Span({'x': -2, 'y': [-1, 1]}), function=inlet),
# 'D': Condition(location=Span({'x': [-2, 2], 'y': [-1, 1]}), function=[momentum, continuity]),
# }

View File

@@ -1,38 +1,10 @@
import argparse
import torch
from torch.nn import Softplus
from pina.problem import SpatialProblem
from pina.operators import grad
from pina.model import FeedForward
from pina import Condition, Span, Plotter, PINN
class FirstOrderODE(SpatialProblem):
x_rng = [0, 5]
output_variables = ['y']
spatial_domain = Span({'x': x_rng})
def ode(input_, output_):
y = output_
x = input_
return grad(y, x) + y - x
def fixed(input_, output_):
exp_value = 1.
return output_ - exp_value
def solution(self, input_):
x = input_
return x - 1.0 + 2*torch.exp(-x)
conditions = {
'bc': Condition(Span({'x': x_rng[0]}), fixed),
'dd': Condition(Span({'x': x_rng}), ode),
}
truth_solution = solution
from pina import Plotter, PINN
from problems.first_order_ode import FirstOrderODE
if __name__ == "__main__":
@@ -44,6 +16,7 @@ if __name__ == "__main__":
parser.add_argument("id_run", help="number of run", type=int)
args = parser.parse_args()
# define Problem + Model + PINN
problem = FirstOrderODE()
model = FeedForward(
layers=[4]*2,
@@ -51,7 +24,6 @@ if __name__ == "__main__":
input_variables=problem.input_variables,
func=Softplus,
)
pinn = PINN(problem, model, lr=0.03, error_norm='mse', regularizer=0)
if args.s:

View File

@@ -1,83 +1,84 @@
import argparse
import numpy as np
import torch
from torch.nn import Softplus
# import argparse
# import numpy as np
# import torch
# from torch.nn import Softplus
from pina import PINN, LabelTensor, Plotter
from pina.model import MultiFeedForward
from problems.parametric_elliptic_optimal_control_alpha_variable import (
ParametricEllipticOptimalControl)
# from pina import PINN, LabelTensor, Plotter
# from pina.model import MultiFeedForward
# from problems.parametric_elliptic_optimal_control_alpha_variable import (
# ParametricEllipticOptimalControl)
class myFeature(torch.nn.Module):
"""
Feature: sin(x)
"""
# class myFeature(torch.nn.Module):
# """
# Feature: sin(x)
# """
def __init__(self):
super(myFeature, self).__init__()
# def __init__(self):
# super(myFeature, self).__init__()
def forward(self, x):
t = (-x.extract(['x1'])**2+1) * (-x.extract(['x2'])**2+1)
return LabelTensor(t, ['k0'])
# def forward(self, x):
# t = (-x.extract(['x1'])**2+1) * (-x.extract(['x2'])**2+1)
# return LabelTensor(t, ['k0'])
class CustomMultiDFF(MultiFeedForward):
# class CustomMultiDFF(MultiFeedForward):
def __init__(self, dff_dict):
super().__init__(dff_dict)
# def __init__(self, dff_dict):
# super().__init__(dff_dict)
def forward(self, x):
out = self.uu(x)
p = LabelTensor((out.extract(['u_param']) * x.extract(['alpha'])), ['p'])
return out.append(p)
# def forward(self, x):
# out = self.uu(x)
# p = LabelTensor((out.extract(['u_param']) * x.extract(['alpha'])), ['p'])
# return out.append(p)
if __name__ == "__main__":
# if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run PINA")
group = parser.add_mutually_exclusive_group(required=True)
group.add_argument("-s", "-save", action="store_true")
group.add_argument("-l", "-load", action="store_true")
args = parser.parse_args()
# parser = argparse.ArgumentParser(description="Run PINA")
# group = parser.add_mutually_exclusive_group(required=True)
# group.add_argument("-s", "-save", action="store_true")
# group.add_argument("-l", "-load", action="store_true")
# args = parser.parse_args()
opc = ParametricEllipticOptimalControl()
model = CustomMultiDFF(
{
'uu': {
'input_variables': ['x1', 'x2', 'mu', 'alpha'],
'output_variables': ['u_param', 'y'],
'layers': [40, 40, 20],
'func': Softplus,
'extra_features': [myFeature()],
},
}
)
# opc = ParametricEllipticOptimalControl()
# model = CustomMultiDFF(
# {
# 'uu': {
# 'input_variables': ['x1', 'x2', 'mu', 'alpha'],
# 'output_variables': ['u_param', 'y'],
# 'layers': [40, 40, 20],
# 'func': Softplus,
# 'extra_features': [myFeature()],
# },
# }
# )
pinn = PINN(
opc,
model,
lr=0.002,
error_norm='mse',
regularizer=1e-8)
# pinn = PINN(
# opc,
# model,
# lr=0.002,
# error_norm='mse',
# regularizer=1e-8)
if args.s:
# if args.s:
pinn.span_pts(
{'variables': ['x1', 'x2'], 'mode': 'random', 'n': 100},
{'variables': ['mu', 'alpha'], 'mode': 'grid', 'n': 5},
locations=['D'])
pinn.span_pts(
{'variables': ['x1', 'x2'], 'mode': 'grid', 'n': 20},
{'variables': ['mu', 'alpha'], 'mode': 'grid', 'n': 5},
locations=['gamma1', 'gamma2', 'gamma3', 'gamma4'])
# pinn.span_pts(
# {'variables': ['x1', 'x2'], 'mode': 'random', 'n': 100},
# {'variables': ['mu', 'alpha'], 'mode': 'grid', 'n': 5},
# locations=['D'])
# pinn.span_pts(
# {'variables': ['x1', 'x2'], 'mode': 'grid', 'n': 20},
# {'variables': ['mu', 'alpha'], 'mode': 'grid', 'n': 5},
# locations=['gamma1', 'gamma2', 'gamma3', 'gamma4'])
pinn.train(1000, 20)
pinn.save_state('pina.ocp')
# pinn.train(1000, 20)
# pinn.save_state('pina.ocp')
else:
pinn.load_state('pina.ocp')
plotter = Plotter()
plotter.plot(pinn, components='y', fixed_variables={'alpha': 0.01, 'mu': 1.0})
plotter.plot(pinn, components='u_param', fixed_variables={'alpha': 0.01, 'mu': 1.0})
plotter.plot(pinn, components='p', fixed_variables={'alpha': 0.01, 'mu': 1.0})
# else:
# pinn.load_state('pina.ocp')
# plotter = Plotter()
# plotter.plot(pinn, components='y', fixed_variables={'alpha': 0.01, 'mu': 1.0})
# plotter.plot(pinn, components='u_param', fixed_variables={'alpha': 0.01, 'mu': 1.0})
# plotter.plot(pinn, components='p', fixed_variables={'alpha': 0.01, 'mu': 1.0})
raise NotImplementedError('not available problem at the moment...')

View File

@@ -37,7 +37,9 @@ if __name__ == "__main__":
if args.s:
pinn.span_pts(200, 'grid', locations=['gamma_top', 'gamma_bot', 'gamma_in', 'gamma_out'])
pinn.span_pts(2000, 'random', locations=['D'])
# pinn.span_pts(2000, 'random', locations=['D'])
pinn.span_pts(2000, 'random', locations=['D1'])
pinn.span_pts(2000, 'random', locations=['D2'])
pinn.train(10000, 100)
with open('stokes_history_{}.txt'.format(args.id_run), 'w') as file_:
for i, losses in pinn.history_loss.items():