Examples update for v0.1 (#206)

* modify examples/problems
* modify tutorials

---------

Co-authored-by: Dario Coscia <dariocoscia@dhcp-235.eduroam.sissa.it>
Co-authored-by: Dario Coscia <dariocoscia@dhcp-015.eduroam.sissa.it>
This commit is contained in:
Dario Coscia
2023-11-14 18:24:07 +01:00
committed by Nicola Demo
parent 0d38de5afe
commit ee39b39805
19 changed files with 605 additions and 613 deletions

View File

@@ -1,52 +1,80 @@
import numpy as np
import torch
from pina.segment import Segment
from pina.cube import Cube
from pina.problem2d import Problem2D
xmin, xmax, ymin, ymax = -1, 1, -1, 1
class ParametricEllipticOptimalControl(Problem2D):
def __init__(self, alpha=1):
def term1(input_, param_, output_):
grad_p = self.grad(output_['p'], input_)
gradgrad_p_x1 = self.grad(grad_p['x1'], input_)
gradgrad_p_x2 = self.grad(grad_p['x2'], input_)
return output_['y'] - param_ - (gradgrad_p_x1['x1'] + gradgrad_p_x2['x2'])
def term2(input_, param_, output_):
grad_y = self.grad(output_['y'], input_)
gradgrad_y_x1 = self.grad(grad_y['x1'], input_)
gradgrad_y_x2 = self.grad(grad_y['x2'], input_)
return - (gradgrad_y_x1['x1'] + gradgrad_y_x2['x2']) - output_['u_param']
def term3(input_, param_, output_):
return output_['p'] - output_['u_param']*alpha
""" Poisson OCP problem. """
def term(input_, param_, output_):
return term1( input_, param_, output_) +term2( input_, param_, output_) + term3( input_, param_, output_)
from pina import Condition
from pina.geometry import CartesianDomain
from pina.equation import SystemEquation, FixedValue
from pina.problem import SpatialProblem, ParametricProblem
from pina.operators import laplacian
def nil_dirichlet(input_, param_, output_):
y_value = 0.0
p_value = 0.0
return torch.abs(output_['y'] - y_value) + torch.abs(output_['p'] - p_value)
# ===================================================== #
# #
# This script implements the two dimensional #
# Parametric Elliptic Optimal Control problem. #
# The ParametricEllipticOptimalControl class is #
# inherited from TimeDependentProblem, SpatialProblem #
# and we denote: #
# u --> field variable #
# p --> field variable #
# y --> field variable #
# x1, x2 --> spatial variables #
# mu, alpha --> problem parameters #
# #
# More info in https://arxiv.org/pdf/2110.13530.pdf #
# Section 4.2 of the article #
# ===================================================== #
self.conditions = {
'gamma1': {'location': Segment((xmin, ymin), (xmax, ymin)), 'func': nil_dirichlet},
'gamma2': {'location': Segment((xmax, ymin), (xmax, ymax)), 'func': nil_dirichlet},
'gamma3': {'location': Segment((xmax, ymax), (xmin, ymax)), 'func': nil_dirichlet},
'gamma4': {'location': Segment((xmin, ymax), (xmin, ymin)), 'func': nil_dirichlet},
'D1': {'location': Cube([[xmin, xmax], [ymin, ymax]]), 'func': term},
#'D2': {'location': Cube([[0, 1], [0, 1]]), 'func': term2},
#'D3': {'location': Cube([[0, 1], [0, 1]]), 'func': term3}
}
self.input_variables = ['x1', 'x2']
self.output_variables = ['u', 'p', 'y']
self.parameters = ['mu']
self.spatial_domain = Cube([[xmin, xmax], [xmin, xmax]])
self.parameter_domain = np.array([[0.5, 3]])
class ParametricEllipticOptimalControl(SpatialProblem, ParametricProblem):
# setting spatial variables ranges
xmin, xmax, ymin, ymax = -1, 1, -1, 1
x_range = [xmin, xmax]
y_range = [ymin, ymax]
# setting parameters range
amin, amax = 0.0001, 1
mumin, mumax = 0.5, 3
mu_range = [mumin, mumax]
a_range = [amin, amax]
# setting field variables
output_variables = ['u', 'p', 'y']
# setting spatial and parameter domain
spatial_domain = CartesianDomain({'x1': x_range, 'x2': y_range})
parameter_domain = CartesianDomain({'mu': mu_range, 'alpha': a_range})
# equation terms as in https://arxiv.org/pdf/2110.13530.pdf
def term1(input_, output_):
laplace_p = laplacian(output_, input_, components=['p'], d=['x1', 'x2'])
return output_.extract(['y']) - input_.extract(['mu']) - laplace_p
def term2(input_, output_):
laplace_y = laplacian(output_, input_, components=['y'], d=['x1', 'x2'])
return - laplace_y - output_.extract(['u'])
def fixed_y(input_, output_):
return output_.extract(['y'])
def fixed_p(input_, output_):
return output_.extract(['p'])
# setting problem condition formulation
conditions = {
'gamma1': Condition(
location=CartesianDomain({'x1': x_range, 'x2': 1, 'mu': mu_range, 'alpha': a_range}),
equation=SystemEquation([fixed_y, fixed_p])),
'gamma2': Condition(
location=CartesianDomain({'x1': x_range, 'x2': -1, 'mu': mu_range, 'alpha': a_range}),
equation=SystemEquation([fixed_y, fixed_p])),
'gamma3': Condition(
location=CartesianDomain({'x1': 1, 'x2': y_range, 'mu': mu_range, 'alpha': a_range}),
equation=SystemEquation([fixed_y, fixed_p])),
'gamma4': Condition(
location=CartesianDomain({'x1': -1, 'x2': y_range, 'mu': mu_range, 'alpha': a_range}),
equation=SystemEquation([fixed_y, fixed_p])),
'D': Condition(
location=CartesianDomain(
{'x1': x_range, 'x2': y_range,
'mu': mu_range, 'alpha': a_range
}),
equation=SystemEquation([term1, term2])),
}