Examples update for v0.1 (#206)

* modify examples/problems
* modify tutorials

---------

Co-authored-by: Dario Coscia <dariocoscia@dhcp-235.eduroam.sissa.it>
Co-authored-by: Dario Coscia <dariocoscia@dhcp-015.eduroam.sissa.it>
This commit is contained in:
Dario Coscia
2023-11-14 18:24:07 +01:00
committed by Nicola Demo
parent 0d38de5afe
commit ee39b39805
19 changed files with 605 additions and 613 deletions

View File

@@ -0,0 +1,88 @@
import argparse
import numpy as np
import torch
from torch.nn import Softplus
from pina import LabelTensor
from pina.solvers import PINN
from pina.model import MultiFeedForward
from pina.plotter import Plotter
from pina.trainer import Trainer
from problems.parametric_elliptic_optimal_control import (
ParametricEllipticOptimalControl)
class myFeature(torch.nn.Module):
"""
Feature: sin(x)
"""
def __init__(self):
super(myFeature, self).__init__()
def forward(self, x):
t = (-x.extract(['x1'])**2+1) * (-x.extract(['x2'])**2+1)
return LabelTensor(t, ['k0'])
class CustomMultiDFF(MultiFeedForward):
def __init__(self, dff_dict):
super().__init__(dff_dict)
def forward(self, x):
out = self.uu(x)
out.labels = ['u', 'y']
p = LabelTensor(
(out.extract(['u']) * x.extract(['alpha'])), ['p'])
return out.append(p)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run PINA")
parser.add_argument("--load", help="directory to save or load file", type=str)
parser.add_argument("--features", help="extra features", type=int)
parser.add_argument("--epochs", help="extra features", type=int, default=1000)
args = parser.parse_args()
if args.features is None:
args.features = 0
# extra features
feat = [myFeature()] if args.features else []
args = parser.parse_args()
# create problem and discretise domain
opc = ParametricEllipticOptimalControl()
opc.discretise_domain(n= 100, mode='random', variables=['x1', 'x2'], locations=['D'])
opc.discretise_domain(n= 5, mode='random', variables=['mu', 'alpha'], locations=['D'])
opc.discretise_domain(n= 20, mode='random', variables=['x1', 'x2'], locations=['gamma1', 'gamma2', 'gamma3', 'gamma4'])
opc.discretise_domain(n= 5, mode='random', variables=['mu', 'alpha'], locations=['gamma1', 'gamma2', 'gamma3', 'gamma4'])
# create model
model = CustomMultiDFF(
{
'uu': {
'input_dimensions': 4 + len(feat),
'output_dimensions': 2,
'layers': [40, 40, 20],
'func': Softplus,
},
}
)
# create PINN
pinn = PINN(problem=opc, model=model, optimizer_kwargs={'lr' : 0.002}, extra_features=feat)
# create trainer
directory = 'pina.parametric_optimal_control_{}'.format(bool(args.features))
trainer = Trainer(solver=pinn, accelerator='cpu', max_epochs=args.epochs, default_root_dir=directory)
if args.load:
pinn = PINN.load_from_checkpoint(checkpoint_path=args.load, problem=opc, model=model, extra_features=feat)
plotter = Plotter()
plotter.plot(pinn, fixed_variables={'mu' : 1 , 'alpha' : 0.001}, components='y')
else:
trainer.train()