Examples update for v0.1 (#206)

* modify examples/problems
* modify tutorials

---------

Co-authored-by: Dario Coscia <dariocoscia@dhcp-235.eduroam.sissa.it>
Co-authored-by: Dario Coscia <dariocoscia@dhcp-015.eduroam.sissa.it>
This commit is contained in:
Dario Coscia
2023-11-14 18:24:07 +01:00
committed by Nicola Demo
parent 0d38de5afe
commit ee39b39805
19 changed files with 605 additions and 613 deletions

View File

@@ -1,7 +1,8 @@
import argparse
import torch
from torch.nn import Softplus
from pina import Plotter, LabelTensor, PINN
from pina import Plotter, LabelTensor, Trainer
from pina.solvers import PINN
from pina.model import FeedForward
from problems.parametric_poisson import ParametricPoisson
@@ -25,41 +26,48 @@ class myFeature(torch.nn.Module):
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run PINA")
group = parser.add_mutually_exclusive_group(required=True)
group.add_argument("-s", "-save", action="store_true")
group.add_argument("-l", "-load", action="store_true")
parser.add_argument("id_run", help="number of run", type=int)
parser.add_argument("features", help="extra features", type=int)
parser.add_argument("--load", help="directory to save or load file", type=str)
parser.add_argument("--features", help="extra features", type=int)
parser.add_argument("--epochs", help="extra features", type=int, default=1000)
args = parser.parse_args()
if args.features is None:
args.features = 0
# extra features
feat = [myFeature()] if args.features else []
poisson_problem = ParametricPoisson()
# create problem and discretise domain
ppoisson_problem = ParametricPoisson()
ppoisson_problem.discretise_domain(n=100, mode='random', variables = ['x', 'y'], locations=['D'])
ppoisson_problem.discretise_domain(n=100, mode='random', variables = ['mu1', 'mu2'], locations=['D'])
ppoisson_problem.discretise_domain(n=20, mode='random', variables = ['x', 'y'], locations=['gamma1', 'gamma2', 'gamma3', 'gamma4'])
ppoisson_problem.discretise_domain(n=5, mode='random', variables = ['mu1', 'mu2'], locations=['gamma1', 'gamma2', 'gamma3', 'gamma4'])
# create model
model = FeedForward(
layers=[10, 10, 10],
output_variables=poisson_problem.output_variables,
input_variables=poisson_problem.input_variables,
func=Softplus,
extra_features=feat
output_dimensions=len(ppoisson_problem.output_variables),
input_dimensions=len(ppoisson_problem.input_variables) + len(feat),
func=Softplus
)
pinn = PINN(poisson_problem, model, lr=0.006, regularizer=1e-6)
# create solver
pinn = PINN(
problem=ppoisson_problem,
model=model,
extra_features=feat,
optimizer_kwargs={'lr' : 0.006}
)
if args.s:
# create trainer
directory = 'pina.parametric_poisson_extrafeats_{}'.format(bool(args.features))
trainer = Trainer(solver=pinn, accelerator='cpu', max_epochs=args.epochs, default_root_dir=directory)
pinn.span_pts(
{'variables': ['x', 'y'], 'mode': 'random', 'n': 100},
{'variables': ['mu1', 'mu2'], 'mode': 'grid', 'n': 5},
locations=['D'])
pinn.span_pts(
{'variables': ['x', 'y'], 'mode': 'grid', 'n': 20},
{'variables': ['mu1', 'mu2'], 'mode': 'grid', 'n': 5},
locations=['gamma1', 'gamma2', 'gamma3', 'gamma4'])
pinn.train(10000, 100)
pinn.save_state('pina.poisson_param')
else:
pinn.load_state('pina.poisson_param')
if args.load:
pinn = PINN.load_from_checkpoint(checkpoint_path=args.load, problem=ppoisson_problem, model=model, extra_features=feat)
plotter = Plotter()
plotter.plot(pinn, fixed_variables={'mu1': 0, 'mu2': 1}, levels=21)
plotter.plot(pinn, fixed_variables={'mu1': 1, 'mu2': -1}, levels=21)
plotter.plot(pinn, fixed_variables={'mu1': 1, 'mu2': -1})
else:
trainer.train()