Examples update for v0.1 (#206)

* modify examples/problems
* modify tutorials

---------

Co-authored-by: Dario Coscia <dariocoscia@dhcp-235.eduroam.sissa.it>
Co-authored-by: Dario Coscia <dariocoscia@dhcp-015.eduroam.sissa.it>
This commit is contained in:
Dario Coscia
2023-11-14 18:24:07 +01:00
committed by Nicola Demo
parent 0d38de5afe
commit ee39b39805
19 changed files with 605 additions and 613 deletions

View File

@@ -1,12 +1,13 @@
""" Run PINA on ODE equation. """
import argparse
import sys
import numpy as np
import torch
from torch.nn import ReLU, Tanh, Softplus
from torch.nn import Softplus
from pina import PINN, LabelTensor, Plotter
from pina import LabelTensor
from pina.model import FeedForward
from pina.adaptive_functions import AdaptiveSin, AdaptiveCos, AdaptiveTanh
from pina.solvers import PINN
from pina.plotter import Plotter
from pina.trainer import Trainer
from problems.poisson import Poisson
@@ -26,39 +27,47 @@ class myFeature(torch.nn.Module):
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run PINA")
group = parser.add_mutually_exclusive_group(required=True)
group.add_argument("-s", "-save", action="store_true")
group.add_argument("-l", "-load", action="store_true")
parser.add_argument("id_run", help="number of run", type=int)
parser.add_argument("features", help="extra features", type=int)
parser.add_argument("--load", help="directory to save or load file", type=str)
parser.add_argument("--features", help="extra features", type=int)
parser.add_argument("--epochs", help="extra features", type=int, default=1000)
args = parser.parse_args()
feat = [myFeature()] if args.features else []
if args.features is None:
args.features = 0
poisson_problem = Poisson()
# extra features
feat = [myFeature()] if args.features else []
args = parser.parse_args()
# create problem and discretise domain
problem = Poisson()
problem.discretise_domain(n=20, mode='grid', locations=['D'])
problem.discretise_domain(n=100, mode='random', locations=['gamma1', 'gamma2', 'gamma3', 'gamma4'])
# create model
model = FeedForward(
layers=[20, 20],
output_variables=poisson_problem.output_variables,
input_variables=poisson_problem.input_variables,
func=Softplus,
extra_features=feat
layers=[10, 10],
output_dimensions=len(problem.output_variables),
input_dimensions=len(problem.input_variables) + len(feat),
func=Softplus
)
# create solver
pinn = PINN(
poisson_problem,
model,
lr=0.03,
error_norm='mse',
regularizer=1e-8)
problem=problem,
model=model,
extra_features=feat,
optimizer_kwargs={'lr' : 0.001}
)
if args.s:
# create trainer
directory = 'pina.parametric_poisson_extrafeats_{}'.format(bool(args.features))
trainer = Trainer(solver=pinn, accelerator='cpu', max_epochs=args.epochs, default_root_dir=directory)
pinn.span_pts(20, 'grid', locations=['gamma1', 'gamma2', 'gamma3', 'gamma4'])
pinn.span_pts(20, 'grid', locations=['D'])
pinn.train(5000, 100)
pinn.save_state('pina.poisson')
else:
pinn.load_state('pina.poisson')
if args.load:
pinn = PINN.load_from_checkpoint(checkpoint_path=args.load, problem=problem, model=model, extra_features=feat)
plotter = Plotter()
plotter.plot(pinn)
else:
trainer.train()