Examples update for v0.1 (#206)
* modify examples/problems * modify tutorials --------- Co-authored-by: Dario Coscia <dariocoscia@dhcp-235.eduroam.sissa.it> Co-authored-by: Dario Coscia <dariocoscia@dhcp-015.eduroam.sissa.it>
This commit is contained in:
committed by
Nicola Demo
parent
0d38de5afe
commit
ee39b39805
@@ -1,12 +1,13 @@
|
||||
""" Run PINA on ODE equation. """
|
||||
import argparse
|
||||
import sys
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch.nn import ReLU, Tanh, Softplus
|
||||
from torch.nn import Softplus
|
||||
|
||||
from pina import PINN, LabelTensor, Plotter
|
||||
from pina import LabelTensor
|
||||
from pina.model import FeedForward
|
||||
from pina.adaptive_functions import AdaptiveSin, AdaptiveCos, AdaptiveTanh
|
||||
from pina.solvers import PINN
|
||||
from pina.plotter import Plotter
|
||||
from pina.trainer import Trainer
|
||||
from problems.poisson import Poisson
|
||||
|
||||
|
||||
@@ -26,39 +27,47 @@ class myFeature(torch.nn.Module):
|
||||
if __name__ == "__main__":
|
||||
|
||||
parser = argparse.ArgumentParser(description="Run PINA")
|
||||
group = parser.add_mutually_exclusive_group(required=True)
|
||||
group.add_argument("-s", "-save", action="store_true")
|
||||
group.add_argument("-l", "-load", action="store_true")
|
||||
parser.add_argument("id_run", help="number of run", type=int)
|
||||
parser.add_argument("features", help="extra features", type=int)
|
||||
parser.add_argument("--load", help="directory to save or load file", type=str)
|
||||
parser.add_argument("--features", help="extra features", type=int)
|
||||
parser.add_argument("--epochs", help="extra features", type=int, default=1000)
|
||||
args = parser.parse_args()
|
||||
|
||||
feat = [myFeature()] if args.features else []
|
||||
if args.features is None:
|
||||
args.features = 0
|
||||
|
||||
poisson_problem = Poisson()
|
||||
# extra features
|
||||
feat = [myFeature()] if args.features else []
|
||||
args = parser.parse_args()
|
||||
|
||||
# create problem and discretise domain
|
||||
problem = Poisson()
|
||||
problem.discretise_domain(n=20, mode='grid', locations=['D'])
|
||||
problem.discretise_domain(n=100, mode='random', locations=['gamma1', 'gamma2', 'gamma3', 'gamma4'])
|
||||
|
||||
# create model
|
||||
model = FeedForward(
|
||||
layers=[20, 20],
|
||||
output_variables=poisson_problem.output_variables,
|
||||
input_variables=poisson_problem.input_variables,
|
||||
func=Softplus,
|
||||
extra_features=feat
|
||||
layers=[10, 10],
|
||||
output_dimensions=len(problem.output_variables),
|
||||
input_dimensions=len(problem.input_variables) + len(feat),
|
||||
func=Softplus
|
||||
)
|
||||
|
||||
# create solver
|
||||
pinn = PINN(
|
||||
poisson_problem,
|
||||
model,
|
||||
lr=0.03,
|
||||
error_norm='mse',
|
||||
regularizer=1e-8)
|
||||
problem=problem,
|
||||
model=model,
|
||||
extra_features=feat,
|
||||
optimizer_kwargs={'lr' : 0.001}
|
||||
)
|
||||
|
||||
if args.s:
|
||||
# create trainer
|
||||
directory = 'pina.parametric_poisson_extrafeats_{}'.format(bool(args.features))
|
||||
trainer = Trainer(solver=pinn, accelerator='cpu', max_epochs=args.epochs, default_root_dir=directory)
|
||||
|
||||
pinn.span_pts(20, 'grid', locations=['gamma1', 'gamma2', 'gamma3', 'gamma4'])
|
||||
pinn.span_pts(20, 'grid', locations=['D'])
|
||||
pinn.train(5000, 100)
|
||||
pinn.save_state('pina.poisson')
|
||||
|
||||
else:
|
||||
pinn.load_state('pina.poisson')
|
||||
if args.load:
|
||||
pinn = PINN.load_from_checkpoint(checkpoint_path=args.load, problem=problem, model=model, extra_features=feat)
|
||||
plotter = Plotter()
|
||||
plotter.plot(pinn)
|
||||
else:
|
||||
trainer.train()
|
||||
Reference in New Issue
Block a user