Examples update for v0.1 (#206)
* modify examples/problems * modify tutorials --------- Co-authored-by: Dario Coscia <dariocoscia@dhcp-235.eduroam.sissa.it> Co-authored-by: Dario Coscia <dariocoscia@dhcp-015.eduroam.sissa.it>
This commit is contained in:
committed by
Nicola Demo
parent
0d38de5afe
commit
ee39b39805
@@ -1,55 +1,52 @@
|
||||
import argparse
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch.nn import ReLU, Tanh, Softplus
|
||||
from torch.nn import Softplus
|
||||
|
||||
from pina import PINN, Plotter
|
||||
from pina import Plotter, Trainer
|
||||
from pina.model import FeedForward
|
||||
from pina.adaptive_functions import AdaptiveSin, AdaptiveCos, AdaptiveTanh
|
||||
from pina.solvers import PINN
|
||||
from problems.stokes import Stokes
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
parser = argparse.ArgumentParser(description="Run PINA")
|
||||
group = parser.add_mutually_exclusive_group(required=True)
|
||||
group.add_argument("-s", "-save", action="store_true")
|
||||
group.add_argument("-l", "-load", action="store_true")
|
||||
parser.add_argument("id_run", help="number of run", type=int)
|
||||
parser = argparse.ArgumentParser(description="Run PINA")
|
||||
parser.add_argument("--load", help="directory to save or load file", type=str)
|
||||
parser.add_argument("--epochs", help="extra features", type=int, default=1000)
|
||||
args = parser.parse_args()
|
||||
|
||||
|
||||
# create problem and discretise domain
|
||||
stokes_problem = Stokes()
|
||||
stokes_problem.discretise_domain(n=1000, locations=['gamma_top', 'gamma_bot', 'gamma_in', 'gamma_out'])
|
||||
stokes_problem.discretise_domain(n=2000, locations=['D'])
|
||||
|
||||
# make the model
|
||||
model = FeedForward(
|
||||
layers=[10, 10, 10, 10],
|
||||
output_variables=stokes_problem.output_variables,
|
||||
input_variables=stokes_problem.input_variables,
|
||||
output_dimensions=len(stokes_problem.output_variables),
|
||||
input_dimensions=len(stokes_problem.input_variables),
|
||||
func=Softplus,
|
||||
)
|
||||
|
||||
# make the pinn
|
||||
pinn = PINN(
|
||||
stokes_problem,
|
||||
model,
|
||||
lr=0.006,
|
||||
error_norm='mse',
|
||||
regularizer=1e-8)
|
||||
optimizer_kwargs={'lr' : 0.001}
|
||||
)
|
||||
|
||||
if args.s:
|
||||
# create trainer
|
||||
directory = 'pina.navier_stokes'
|
||||
trainer = Trainer(solver=pinn, accelerator='cpu', max_epochs=args.epochs, default_root_dir=directory)
|
||||
|
||||
pinn.span_pts(200, 'grid', locations=['gamma_top', 'gamma_bot', 'gamma_in', 'gamma_out'])
|
||||
# pinn.span_pts(2000, 'random', locations=['D'])
|
||||
pinn.span_pts(2000, 'random', locations=['D1'])
|
||||
pinn.span_pts(2000, 'random', locations=['D2'])
|
||||
pinn.train(10000, 100)
|
||||
with open('stokes_history_{}.txt'.format(args.id_run), 'w') as file_:
|
||||
for i, losses in pinn.history_loss.items():
|
||||
file_.write('{} {}\n'.format(i, sum(losses)))
|
||||
pinn.save_state('pina.stokes')
|
||||
|
||||
else:
|
||||
pinn.load_state('pina.stokes')
|
||||
if args.load:
|
||||
pinn = PINN.load_from_checkpoint(checkpoint_path=args.load, problem=stokes_problem, model=model)
|
||||
plotter = Plotter()
|
||||
plotter.plot(pinn, components='ux')
|
||||
plotter.plot(pinn, components='uy')
|
||||
plotter.plot(pinn, components='p')
|
||||
else:
|
||||
trainer.train()
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user