Examples update for v0.1 (#206)
* modify examples/problems * modify tutorials --------- Co-authored-by: Dario Coscia <dariocoscia@dhcp-235.eduroam.sissa.it> Co-authored-by: Dario Coscia <dariocoscia@dhcp-015.eduroam.sissa.it>
This commit is contained in:
committed by
Nicola Demo
parent
0d38de5afe
commit
ee39b39805
64
examples/run_wave.py
Normal file
64
examples/run_wave.py
Normal file
@@ -0,0 +1,64 @@
|
||||
""" Run PINA on Burgers equation. """
|
||||
|
||||
import argparse
|
||||
import torch
|
||||
from torch.nn import Softplus
|
||||
|
||||
from pina import LabelTensor
|
||||
from pina.model import FeedForward
|
||||
from pina.solvers import PINN
|
||||
from pina.plotter import Plotter
|
||||
from pina.trainer import Trainer
|
||||
from problems.wave import Wave
|
||||
|
||||
class HardMLP(torch.nn.Module):
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__()
|
||||
|
||||
self.layers = FeedForward(**kwargs)
|
||||
|
||||
# here in the foward we implement the hard constraints
|
||||
def forward(self, x):
|
||||
hard_space = x.extract(['x'])*(1-x.extract(['x']))*x.extract(['y'])*(1-x.extract(['y']))
|
||||
hard_t = torch.sin(torch.pi*x.extract(['x'])) * torch.sin(torch.pi*x.extract(['y'])) * torch.cos(torch.sqrt(torch.tensor(2.))*torch.pi*x.extract(['t']))
|
||||
return hard_space * self.layers(x) * x.extract(['t']) + hard_t
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
parser = argparse.ArgumentParser(description="Run PINA")
|
||||
parser.add_argument("--load", help="directory to save or load file", type=str)
|
||||
parser.add_argument("--epochs", help="extra features", type=int, default=1000)
|
||||
args = parser.parse_args()
|
||||
|
||||
|
||||
# create problem and discretise domain
|
||||
wave_problem = Wave()
|
||||
wave_problem.discretise_domain(1000, 'random', locations=['D', 't0', 'gamma1', 'gamma2', 'gamma3', 'gamma4'])
|
||||
|
||||
# create model
|
||||
model = HardMLP(
|
||||
layers=[40, 40, 40],
|
||||
output_dimensions=len(wave_problem.output_variables),
|
||||
input_dimensions=len(wave_problem.input_variables),
|
||||
func=Softplus
|
||||
)
|
||||
|
||||
# create solver
|
||||
pinn = PINN(
|
||||
problem=wave_problem,
|
||||
model=model,
|
||||
optimizer_kwargs={'lr' : 0.006}
|
||||
)
|
||||
|
||||
# create trainer
|
||||
directory = 'pina.wave'
|
||||
trainer = Trainer(solver=pinn, accelerator='cpu', max_epochs=args.epochs, default_root_dir=directory)
|
||||
|
||||
|
||||
if args.load:
|
||||
pinn = PINN.load_from_checkpoint(checkpoint_path=args.load, problem=wave_problem, model=model)
|
||||
plotter = Plotter()
|
||||
plotter.plot(pinn)
|
||||
else:
|
||||
trainer.train()
|
||||
Reference in New Issue
Block a user