Examples update for v0.1 (#206)

* modify examples/problems
* modify tutorials

---------

Co-authored-by: Dario Coscia <dariocoscia@dhcp-235.eduroam.sissa.it>
Co-authored-by: Dario Coscia <dariocoscia@dhcp-015.eduroam.sissa.it>
This commit is contained in:
Dario Coscia
2023-11-14 18:24:07 +01:00
committed by Nicola Demo
parent 0d38de5afe
commit ee39b39805
19 changed files with 605 additions and 613 deletions

64
examples/run_wave.py Normal file
View File

@@ -0,0 +1,64 @@
""" Run PINA on Burgers equation. """
import argparse
import torch
from torch.nn import Softplus
from pina import LabelTensor
from pina.model import FeedForward
from pina.solvers import PINN
from pina.plotter import Plotter
from pina.trainer import Trainer
from problems.wave import Wave
class HardMLP(torch.nn.Module):
def __init__(self, **kwargs):
super().__init__()
self.layers = FeedForward(**kwargs)
# here in the foward we implement the hard constraints
def forward(self, x):
hard_space = x.extract(['x'])*(1-x.extract(['x']))*x.extract(['y'])*(1-x.extract(['y']))
hard_t = torch.sin(torch.pi*x.extract(['x'])) * torch.sin(torch.pi*x.extract(['y'])) * torch.cos(torch.sqrt(torch.tensor(2.))*torch.pi*x.extract(['t']))
return hard_space * self.layers(x) * x.extract(['t']) + hard_t
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run PINA")
parser.add_argument("--load", help="directory to save or load file", type=str)
parser.add_argument("--epochs", help="extra features", type=int, default=1000)
args = parser.parse_args()
# create problem and discretise domain
wave_problem = Wave()
wave_problem.discretise_domain(1000, 'random', locations=['D', 't0', 'gamma1', 'gamma2', 'gamma3', 'gamma4'])
# create model
model = HardMLP(
layers=[40, 40, 40],
output_dimensions=len(wave_problem.output_variables),
input_dimensions=len(wave_problem.input_variables),
func=Softplus
)
# create solver
pinn = PINN(
problem=wave_problem,
model=model,
optimizer_kwargs={'lr' : 0.006}
)
# create trainer
directory = 'pina.wave'
trainer = Trainer(solver=pinn, accelerator='cpu', max_epochs=args.epochs, default_root_dir=directory)
if args.load:
pinn = PINN.load_from_checkpoint(checkpoint_path=args.load, problem=wave_problem, model=model)
plotter = Plotter()
plotter.plot(pinn)
else:
trainer.train()