Examples update for v0.1 (#206)
* modify examples/problems * modify tutorials --------- Co-authored-by: Dario Coscia <dariocoscia@dhcp-235.eduroam.sissa.it> Co-authored-by: Dario Coscia <dariocoscia@dhcp-015.eduroam.sissa.it>
This commit is contained in:
committed by
Nicola Demo
parent
0d38de5afe
commit
ee39b39805
@@ -1,9 +1,5 @@
|
|||||||
import torch
|
""" Burgers' problem. """
|
||||||
|
|
||||||
from pina.problem import TimeDependentProblem, SpatialProblem
|
|
||||||
from pina.operators import grad
|
|
||||||
from pina import Condition
|
|
||||||
from pina.span import Span
|
|
||||||
|
|
||||||
# ===================================================== #
|
# ===================================================== #
|
||||||
# #
|
# #
|
||||||
@@ -17,12 +13,16 @@ from pina.span import Span
|
|||||||
# #
|
# #
|
||||||
# ===================================================== #
|
# ===================================================== #
|
||||||
|
|
||||||
class Burgers1D(TimeDependentProblem, SpatialProblem):
|
|
||||||
|
|
||||||
# assign output/ spatial and temporal variables
|
import torch
|
||||||
output_variables = ['u']
|
from pina.geometry import CartesianDomain
|
||||||
spatial_domain = Span({'x': [-1, 1]})
|
from pina import Condition
|
||||||
temporal_domain = Span({'t': [0, 1]})
|
from pina.problem import TimeDependentProblem, SpatialProblem
|
||||||
|
from pina.operators import grad
|
||||||
|
from pina.equation import FixedValue, Equation
|
||||||
|
|
||||||
|
|
||||||
|
class Burgers1D(TimeDependentProblem, SpatialProblem):
|
||||||
|
|
||||||
# define the burger equation
|
# define the burger equation
|
||||||
def burger_equation(input_, output_):
|
def burger_equation(input_, output_):
|
||||||
@@ -34,20 +34,20 @@ class Burgers1D(TimeDependentProblem, SpatialProblem):
|
|||||||
(0.01/torch.pi)*ddu.extract(['ddudxdx'])
|
(0.01/torch.pi)*ddu.extract(['ddudxdx'])
|
||||||
)
|
)
|
||||||
|
|
||||||
# define nill dirichlet boundary conditions
|
|
||||||
def nil_dirichlet(input_, output_):
|
|
||||||
u_expected = 0.0
|
|
||||||
return output_.extract(['u']) - u_expected
|
|
||||||
|
|
||||||
# define initial condition
|
# define initial condition
|
||||||
def initial_condition(input_, output_):
|
def initial_condition(input_, output_):
|
||||||
u_expected = -torch.sin(torch.pi*input_.extract(['x']))
|
u_expected = -torch.sin(torch.pi*input_.extract(['x']))
|
||||||
return output_.extract(['u']) - u_expected
|
return output_.extract(['u']) - u_expected
|
||||||
|
|
||||||
|
# assign output/ spatial and temporal variables
|
||||||
|
output_variables = ['u']
|
||||||
|
spatial_domain = CartesianDomain({'x': [-1, 1]})
|
||||||
|
temporal_domain = CartesianDomain({'t': [0, 1]})
|
||||||
|
|
||||||
# problem condition statement
|
# problem condition statement
|
||||||
conditions = {
|
conditions = {
|
||||||
'gamma1': Condition(location=Span({'x': -1, 't': [0, 1]}), function=nil_dirichlet),
|
'gamma1': Condition(location=CartesianDomain({'x': -1, 't': [0, 1]}), equation=FixedValue(0.)),
|
||||||
'gamma2': Condition(location=Span({'x': 1, 't': [0, 1]}), function=nil_dirichlet),
|
'gamma2': Condition(location=CartesianDomain({'x': 1, 't': [0, 1]}), equation=FixedValue(0.)),
|
||||||
't0': Condition(location=Span({'x': [-1, 1], 't': 0}), function=initial_condition),
|
't0': Condition(location=CartesianDomain({'x': [-1, 1], 't': 0}), equation=Equation(initial_condition)),
|
||||||
'D': Condition(location=Span({'x': [-1, 1], 't': [0, 1]}), function=burger_equation),
|
'D': Condition(location=CartesianDomain({'x': [-1, 1], 't': [0, 1]}), equation=Equation(burger_equation)),
|
||||||
}
|
}
|
||||||
@@ -1,47 +0,0 @@
|
|||||||
# import torch
|
|
||||||
# from pina.problem import Problem
|
|
||||||
# from pina.segment import Segment
|
|
||||||
# from pina.cube import Cube
|
|
||||||
# from pina.problem2d import Problem2D
|
|
||||||
|
|
||||||
# xmin, xmax, ymin, ymax = -1, 1, -1, 1
|
|
||||||
|
|
||||||
# class EllipticOptimalControl(Problem2D):
|
|
||||||
|
|
||||||
# def __init__(self, alpha=1):
|
|
||||||
|
|
||||||
# def term1(input_, output_):
|
|
||||||
# grad_p = self.grad(output_.extract(['p']), input_)
|
|
||||||
# gradgrad_p_x1 = self.grad(grad_p.extract(['x1']), input_)
|
|
||||||
# gradgrad_p_x2 = self.grad(grad_p.extract(['x2']), input_)
|
|
||||||
# yd = 2.0
|
|
||||||
# return output_.extract(['y']) - yd - (gradgrad_p_x1.extract(['x1']) + gradgrad_p_x2.extract(['x2']))
|
|
||||||
|
|
||||||
# def term2(input_, output_):
|
|
||||||
# grad_y = self.grad(output_.extract(['y']), input_)
|
|
||||||
# gradgrad_y_x1 = self.grad(grad_y.extract(['x1']), input_)
|
|
||||||
# gradgrad_y_x2 = self.grad(grad_y.extract(['x2']), input_)
|
|
||||||
# return - (gradgrad_y_x1.extract(['x1']) + gradgrad_y_x2.extract(['x2'])) - output_.extract(['u'])
|
|
||||||
|
|
||||||
# def term3(input_, output_):
|
|
||||||
# return output_.extract(['p']) - output_.extract(['u'])*alpha
|
|
||||||
|
|
||||||
|
|
||||||
# def nil_dirichlet(input_, output_):
|
|
||||||
# y_value = 0.0
|
|
||||||
# p_value = 0.0
|
|
||||||
# return torch.abs(output_.extract(['y']) - y_value) + torch.abs(output_.extract(['p']) - p_value)
|
|
||||||
|
|
||||||
# self.conditions = {
|
|
||||||
# 'gamma1': {'location': Segment((xmin, ymin), (xmax, ymin)), 'func': nil_dirichlet},
|
|
||||||
# 'gamma2': {'location': Segment((xmax, ymin), (xmax, ymax)), 'func': nil_dirichlet},
|
|
||||||
# 'gamma3': {'location': Segment((xmax, ymax), (xmin, ymax)), 'func': nil_dirichlet},
|
|
||||||
# 'gamma4': {'location': Segment((xmin, ymax), (xmin, ymin)), 'func': nil_dirichlet},
|
|
||||||
# 'D1': {'location': Cube([[xmin, xmax], [ymin, ymax]]), 'func': [term1, term2, term3]},
|
|
||||||
# }
|
|
||||||
|
|
||||||
# self.input_variables = ['x1', 'x2']
|
|
||||||
# self.output_variables = ['u', 'p', 'y']
|
|
||||||
# self.spatial_domain = Cube([[xmin, xmax], [xmin, xmax]])
|
|
||||||
|
|
||||||
raise NotImplementedError('not available problem at the moment...')
|
|
||||||
@@ -1,7 +1,5 @@
|
|||||||
from pina.problem import SpatialProblem
|
""" Simple ODE problem. """
|
||||||
from pina import Condition, Span
|
|
||||||
from pina.operators import grad
|
|
||||||
import torch
|
|
||||||
|
|
||||||
# ===================================================== #
|
# ===================================================== #
|
||||||
# #
|
# #
|
||||||
@@ -11,16 +9,28 @@ import torch
|
|||||||
# y --> field variable #
|
# y --> field variable #
|
||||||
# x --> spatial variable #
|
# x --> spatial variable #
|
||||||
# #
|
# #
|
||||||
|
# The equation is: #
|
||||||
|
# dy(x)/dx + y(x) = x #
|
||||||
|
# #
|
||||||
# ===================================================== #
|
# ===================================================== #
|
||||||
|
|
||||||
|
|
||||||
|
from pina.problem import SpatialProblem
|
||||||
|
from pina import Condition
|
||||||
|
from pina.geometry import CartesianDomain
|
||||||
|
from pina.operators import grad
|
||||||
|
from pina.equation import Equation, FixedValue
|
||||||
|
import torch
|
||||||
|
|
||||||
|
|
||||||
class FirstOrderODE(SpatialProblem):
|
class FirstOrderODE(SpatialProblem):
|
||||||
|
|
||||||
# variable domain range
|
# variable domain range
|
||||||
x_rng = [0, 5]
|
x_rng = [0., 5.]
|
||||||
# field variable
|
# field variable
|
||||||
output_variables = ['y']
|
output_variables = ['y']
|
||||||
# create domain
|
# create domain
|
||||||
spatial_domain = Span({'x': x_rng})
|
spatial_domain = CartesianDomain({'x': x_rng})
|
||||||
|
|
||||||
# define the ode
|
# define the ode
|
||||||
def ode(input_, output_):
|
def ode(input_, output_):
|
||||||
@@ -28,11 +38,6 @@ class FirstOrderODE(SpatialProblem):
|
|||||||
x = input_
|
x = input_
|
||||||
return grad(y, x) + y - x
|
return grad(y, x) + y - x
|
||||||
|
|
||||||
# define initial conditions
|
|
||||||
def fixed(input_, output_):
|
|
||||||
exp_value = 1.
|
|
||||||
return output_ - exp_value
|
|
||||||
|
|
||||||
# define real solution
|
# define real solution
|
||||||
def solution(self, input_):
|
def solution(self, input_):
|
||||||
x = input_
|
x = input_
|
||||||
@@ -40,7 +45,8 @@ class FirstOrderODE(SpatialProblem):
|
|||||||
|
|
||||||
# define problem conditions
|
# define problem conditions
|
||||||
conditions = {
|
conditions = {
|
||||||
'bc': Condition(location=Span({'x': x_rng[0]}), function=fixed),
|
'BC': Condition(location=CartesianDomain({'x': x_rng[0]}), equation=FixedValue(1.)),
|
||||||
'dd': Condition(location=Span({'x': x_rng}), function=ode),
|
'D': Condition(location=CartesianDomain({'x': x_rng}), equation=Equation(ode)),
|
||||||
}
|
}
|
||||||
|
|
||||||
truth_solution = solution
|
truth_solution = solution
|
||||||
@@ -1,52 +1,80 @@
|
|||||||
import numpy as np
|
""" Poisson OCP problem. """
|
||||||
import torch
|
|
||||||
from pina.segment import Segment
|
|
||||||
from pina.cube import Cube
|
|
||||||
from pina.problem2d import Problem2D
|
|
||||||
|
|
||||||
xmin, xmax, ymin, ymax = -1, 1, -1, 1
|
|
||||||
|
|
||||||
class ParametricEllipticOptimalControl(Problem2D):
|
|
||||||
|
|
||||||
def __init__(self, alpha=1):
|
|
||||||
|
|
||||||
def term1(input_, param_, output_):
|
|
||||||
grad_p = self.grad(output_['p'], input_)
|
|
||||||
gradgrad_p_x1 = self.grad(grad_p['x1'], input_)
|
|
||||||
gradgrad_p_x2 = self.grad(grad_p['x2'], input_)
|
|
||||||
return output_['y'] - param_ - (gradgrad_p_x1['x1'] + gradgrad_p_x2['x2'])
|
|
||||||
|
|
||||||
def term2(input_, param_, output_):
|
|
||||||
grad_y = self.grad(output_['y'], input_)
|
|
||||||
gradgrad_y_x1 = self.grad(grad_y['x1'], input_)
|
|
||||||
gradgrad_y_x2 = self.grad(grad_y['x2'], input_)
|
|
||||||
return - (gradgrad_y_x1['x1'] + gradgrad_y_x2['x2']) - output_['u_param']
|
|
||||||
|
|
||||||
def term3(input_, param_, output_):
|
|
||||||
return output_['p'] - output_['u_param']*alpha
|
|
||||||
|
|
||||||
|
|
||||||
def term(input_, param_, output_):
|
from pina import Condition
|
||||||
return term1( input_, param_, output_) +term2( input_, param_, output_) + term3( input_, param_, output_)
|
from pina.geometry import CartesianDomain
|
||||||
|
from pina.equation import SystemEquation, FixedValue
|
||||||
|
from pina.problem import SpatialProblem, ParametricProblem
|
||||||
|
from pina.operators import laplacian
|
||||||
|
|
||||||
def nil_dirichlet(input_, param_, output_):
|
# ===================================================== #
|
||||||
y_value = 0.0
|
# #
|
||||||
p_value = 0.0
|
# This script implements the two dimensional #
|
||||||
return torch.abs(output_['y'] - y_value) + torch.abs(output_['p'] - p_value)
|
# Parametric Elliptic Optimal Control problem. #
|
||||||
|
# The ParametricEllipticOptimalControl class is #
|
||||||
|
# inherited from TimeDependentProblem, SpatialProblem #
|
||||||
|
# and we denote: #
|
||||||
|
# u --> field variable #
|
||||||
|
# p --> field variable #
|
||||||
|
# y --> field variable #
|
||||||
|
# x1, x2 --> spatial variables #
|
||||||
|
# mu, alpha --> problem parameters #
|
||||||
|
# #
|
||||||
|
# More info in https://arxiv.org/pdf/2110.13530.pdf #
|
||||||
|
# Section 4.2 of the article #
|
||||||
|
# ===================================================== #
|
||||||
|
|
||||||
self.conditions = {
|
|
||||||
'gamma1': {'location': Segment((xmin, ymin), (xmax, ymin)), 'func': nil_dirichlet},
|
class ParametricEllipticOptimalControl(SpatialProblem, ParametricProblem):
|
||||||
'gamma2': {'location': Segment((xmax, ymin), (xmax, ymax)), 'func': nil_dirichlet},
|
|
||||||
'gamma3': {'location': Segment((xmax, ymax), (xmin, ymax)), 'func': nil_dirichlet},
|
# setting spatial variables ranges
|
||||||
'gamma4': {'location': Segment((xmin, ymax), (xmin, ymin)), 'func': nil_dirichlet},
|
xmin, xmax, ymin, ymax = -1, 1, -1, 1
|
||||||
'D1': {'location': Cube([[xmin, xmax], [ymin, ymax]]), 'func': term},
|
x_range = [xmin, xmax]
|
||||||
#'D2': {'location': Cube([[0, 1], [0, 1]]), 'func': term2},
|
y_range = [ymin, ymax]
|
||||||
#'D3': {'location': Cube([[0, 1], [0, 1]]), 'func': term3}
|
# setting parameters range
|
||||||
|
amin, amax = 0.0001, 1
|
||||||
|
mumin, mumax = 0.5, 3
|
||||||
|
mu_range = [mumin, mumax]
|
||||||
|
a_range = [amin, amax]
|
||||||
|
# setting field variables
|
||||||
|
output_variables = ['u', 'p', 'y']
|
||||||
|
# setting spatial and parameter domain
|
||||||
|
spatial_domain = CartesianDomain({'x1': x_range, 'x2': y_range})
|
||||||
|
parameter_domain = CartesianDomain({'mu': mu_range, 'alpha': a_range})
|
||||||
|
|
||||||
|
# equation terms as in https://arxiv.org/pdf/2110.13530.pdf
|
||||||
|
def term1(input_, output_):
|
||||||
|
laplace_p = laplacian(output_, input_, components=['p'], d=['x1', 'x2'])
|
||||||
|
return output_.extract(['y']) - input_.extract(['mu']) - laplace_p
|
||||||
|
|
||||||
|
def term2(input_, output_):
|
||||||
|
laplace_y = laplacian(output_, input_, components=['y'], d=['x1', 'x2'])
|
||||||
|
return - laplace_y - output_.extract(['u'])
|
||||||
|
|
||||||
|
def fixed_y(input_, output_):
|
||||||
|
return output_.extract(['y'])
|
||||||
|
|
||||||
|
def fixed_p(input_, output_):
|
||||||
|
return output_.extract(['p'])
|
||||||
|
|
||||||
|
# setting problem condition formulation
|
||||||
|
conditions = {
|
||||||
|
'gamma1': Condition(
|
||||||
|
location=CartesianDomain({'x1': x_range, 'x2': 1, 'mu': mu_range, 'alpha': a_range}),
|
||||||
|
equation=SystemEquation([fixed_y, fixed_p])),
|
||||||
|
'gamma2': Condition(
|
||||||
|
location=CartesianDomain({'x1': x_range, 'x2': -1, 'mu': mu_range, 'alpha': a_range}),
|
||||||
|
equation=SystemEquation([fixed_y, fixed_p])),
|
||||||
|
'gamma3': Condition(
|
||||||
|
location=CartesianDomain({'x1': 1, 'x2': y_range, 'mu': mu_range, 'alpha': a_range}),
|
||||||
|
equation=SystemEquation([fixed_y, fixed_p])),
|
||||||
|
'gamma4': Condition(
|
||||||
|
location=CartesianDomain({'x1': -1, 'x2': y_range, 'mu': mu_range, 'alpha': a_range}),
|
||||||
|
equation=SystemEquation([fixed_y, fixed_p])),
|
||||||
|
'D': Condition(
|
||||||
|
location=CartesianDomain(
|
||||||
|
{'x1': x_range, 'x2': y_range,
|
||||||
|
'mu': mu_range, 'alpha': a_range
|
||||||
|
}),
|
||||||
|
equation=SystemEquation([term1, term2])),
|
||||||
}
|
}
|
||||||
|
|
||||||
self.input_variables = ['x1', 'x2']
|
|
||||||
self.output_variables = ['u', 'p', 'y']
|
|
||||||
self.parameters = ['mu']
|
|
||||||
self.spatial_domain = Cube([[xmin, xmax], [xmin, xmax]])
|
|
||||||
self.parameter_domain = np.array([[0.5, 3]])
|
|
||||||
|
|
||||||
|
|||||||
@@ -1,78 +0,0 @@
|
|||||||
import numpy as np
|
|
||||||
import torch
|
|
||||||
|
|
||||||
from pina import Span, Condition
|
|
||||||
from pina.problem import SpatialProblem, ParametricProblem
|
|
||||||
from pina.operators import grad, laplacian
|
|
||||||
|
|
||||||
# ===================================================== #
|
|
||||||
# #
|
|
||||||
# This script implements the two dimensional #
|
|
||||||
# Parametric Elliptic Optimal Control problem. #
|
|
||||||
# The ParametricEllipticOptimalControl class is #
|
|
||||||
# inherited from TimeDependentProblem, SpatialProblem #
|
|
||||||
# and we denote: #
|
|
||||||
# u --> field variable #
|
|
||||||
# p --> field variable #
|
|
||||||
# y --> field variable #
|
|
||||||
# x1, x2 --> spatial variables #
|
|
||||||
# mu, alpha --> problem parameters #
|
|
||||||
# #
|
|
||||||
# More info in https://arxiv.org/pdf/2110.13530.pdf #
|
|
||||||
# Section 4.2 of the article #
|
|
||||||
# ===================================================== #
|
|
||||||
|
|
||||||
|
|
||||||
class ParametricEllipticOptimalControl(SpatialProblem, ParametricProblem):
|
|
||||||
|
|
||||||
# setting spatial variables ranges
|
|
||||||
xmin, xmax, ymin, ymax = -1, 1, -1, 1
|
|
||||||
x_range = [xmin, xmax]
|
|
||||||
y_range = [ymin, ymax]
|
|
||||||
# setting parameters range
|
|
||||||
amin, amax = 0.0001, 1
|
|
||||||
mumin, mumax = 0.5, 3
|
|
||||||
mu_range = [mumin, mumax]
|
|
||||||
a_range = [amin, amax]
|
|
||||||
# setting field variables
|
|
||||||
output_variables = ['u', 'p', 'y']
|
|
||||||
# setting spatial and parameter domain
|
|
||||||
spatial_domain = Span({'x1': x_range, 'x2': y_range})
|
|
||||||
parameter_domain = Span({'mu': mu_range, 'alpha': a_range})
|
|
||||||
|
|
||||||
# equation terms as in https://arxiv.org/pdf/2110.13530.pdf
|
|
||||||
def term1(input_, output_):
|
|
||||||
laplace_p = laplacian(output_, input_, components=['p'], d=['x1', 'x2'])
|
|
||||||
return output_.extract(['y']) - input_.extract(['mu']) - laplace_p
|
|
||||||
|
|
||||||
def term2(input_, output_):
|
|
||||||
laplace_y = laplacian(output_, input_, components=['y'], d=['x1', 'x2'])
|
|
||||||
return - laplace_y - output_.extract(['u_param'])
|
|
||||||
|
|
||||||
def state_dirichlet(input_, output_):
|
|
||||||
y_exp = 0.0
|
|
||||||
return output_.extract(['y']) - y_exp
|
|
||||||
|
|
||||||
def adj_dirichlet(input_, output_):
|
|
||||||
p_exp = 0.0
|
|
||||||
return output_.extract(['p']) - p_exp
|
|
||||||
|
|
||||||
# setting problem condition formulation
|
|
||||||
conditions = {
|
|
||||||
'gamma1': Condition(
|
|
||||||
location=Span({'x1': x_range, 'x2': 1, 'mu': mu_range, 'alpha': a_range}),
|
|
||||||
function=[state_dirichlet, adj_dirichlet]),
|
|
||||||
'gamma2': Condition(
|
|
||||||
location=Span({'x1': x_range, 'x2': -1, 'mu': mu_range, 'alpha': a_range}),
|
|
||||||
function=[state_dirichlet, adj_dirichlet]),
|
|
||||||
'gamma3': Condition(
|
|
||||||
location=Span({'x1': 1, 'x2': y_range, 'mu': mu_range, 'alpha': a_range}),
|
|
||||||
function=[state_dirichlet, adj_dirichlet]),
|
|
||||||
'gamma4': Condition(
|
|
||||||
location=Span({'x1': -1, 'x2': y_range, 'mu': mu_range, 'alpha': a_range}),
|
|
||||||
function=[state_dirichlet, adj_dirichlet]),
|
|
||||||
'D': Condition(
|
|
||||||
location=Span({'x1': x_range, 'x2': y_range,
|
|
||||||
'mu': mu_range, 'alpha': a_range}),
|
|
||||||
function=[term1, term2]),
|
|
||||||
}
|
|
||||||
@@ -1,8 +1,5 @@
|
|||||||
import torch
|
""" Parametric Poisson problem. """
|
||||||
|
|
||||||
from pina.problem import SpatialProblem, ParametricProblem
|
|
||||||
from pina.operators import laplacian
|
|
||||||
from pina import Span, Condition
|
|
||||||
|
|
||||||
# ===================================================== #
|
# ===================================================== #
|
||||||
# #
|
# #
|
||||||
@@ -16,12 +13,20 @@ from pina import Span, Condition
|
|||||||
# #
|
# #
|
||||||
# ===================================================== #
|
# ===================================================== #
|
||||||
|
|
||||||
|
|
||||||
|
from pina.geometry import CartesianDomain
|
||||||
|
from pina.problem import SpatialProblem, ParametricProblem
|
||||||
|
from pina.operators import laplacian
|
||||||
|
from pina.equation import FixedValue, Equation
|
||||||
|
from pina import Condition
|
||||||
|
import torch
|
||||||
|
|
||||||
class ParametricPoisson(SpatialProblem, ParametricProblem):
|
class ParametricPoisson(SpatialProblem, ParametricProblem):
|
||||||
|
|
||||||
# assign output/ spatial and parameter variables
|
# assign output/ spatial and parameter variables
|
||||||
output_variables = ['u']
|
output_variables = ['u']
|
||||||
spatial_domain = Span({'x': [-1, 1], 'y': [-1, 1]})
|
spatial_domain = CartesianDomain({'x': [-1, 1], 'y': [-1, 1]})
|
||||||
parameter_domain = Span({'mu1': [-1, 1], 'mu2': [-1, 1]})
|
parameter_domain = CartesianDomain({'mu1': [-1, 1], 'mu2': [-1, 1]})
|
||||||
|
|
||||||
# define the laplace equation
|
# define the laplace equation
|
||||||
def laplace_equation(input_, output_):
|
def laplace_equation(input_, output_):
|
||||||
@@ -30,26 +35,21 @@ class ParametricPoisson(SpatialProblem, ParametricProblem):
|
|||||||
- 2*(input_.extract(['y']) - input_.extract(['mu2']))**2)
|
- 2*(input_.extract(['y']) - input_.extract(['mu2']))**2)
|
||||||
return laplacian(output_.extract(['u']), input_) - force_term
|
return laplacian(output_.extract(['u']), input_) - force_term
|
||||||
|
|
||||||
# define nill dirichlet boundary conditions
|
|
||||||
def nil_dirichlet(input_, output_):
|
|
||||||
value = 0.0
|
|
||||||
return output_.extract(['u']) - value
|
|
||||||
|
|
||||||
# problem condition statement
|
# problem condition statement
|
||||||
conditions = {
|
conditions = {
|
||||||
'gamma1': Condition(
|
'gamma1': Condition(
|
||||||
location=Span({'x': [-1, 1], 'y': 1, 'mu1': [-1, 1], 'mu2': [-1, 1]}),
|
location=CartesianDomain({'x': [-1, 1], 'y': 1, 'mu1': [-1, 1], 'mu2': [-1, 1]}),
|
||||||
function=nil_dirichlet),
|
equation=FixedValue(0.)),
|
||||||
'gamma2': Condition(
|
'gamma2': Condition(
|
||||||
location=Span({'x': [-1, 1], 'y': -1, 'mu1': [-1, 1], 'mu2': [-1, 1]}),
|
location=CartesianDomain({'x': [-1, 1], 'y': -1, 'mu1': [-1, 1], 'mu2': [-1, 1]}),
|
||||||
function=nil_dirichlet),
|
equation=FixedValue(0.)),
|
||||||
'gamma3': Condition(
|
'gamma3': Condition(
|
||||||
location=Span({'x': 1, 'y': [-1, 1], 'mu1': [-1, 1], 'mu2': [-1, 1]}),
|
location=CartesianDomain({'x': 1, 'y': [-1, 1], 'mu1': [-1, 1], 'mu2': [-1, 1]}),
|
||||||
function=nil_dirichlet),
|
equation=FixedValue(0.)),
|
||||||
'gamma4': Condition(
|
'gamma4': Condition(
|
||||||
location=Span({'x': -1, 'y': [-1, 1], 'mu1': [-1, 1], 'mu2': [-1, 1]}),
|
location=CartesianDomain({'x': -1, 'y': [-1, 1], 'mu1': [-1, 1], 'mu2': [-1, 1]}),
|
||||||
function=nil_dirichlet),
|
equation=FixedValue(0.)),
|
||||||
'D': Condition(
|
'D': Condition(
|
||||||
location=Span({'x': [-1, 1], 'y': [-1, 1], 'mu1': [-1, 1], 'mu2': [-1, 1]}),
|
location=CartesianDomain({'x': [-1, 1], 'y': [-1, 1], 'mu1': [-1, 1], 'mu2': [-1, 1]}),
|
||||||
function=laplace_equation),
|
equation=Equation(laplace_equation)),
|
||||||
}
|
}
|
||||||
@@ -1,10 +1,5 @@
|
|||||||
""" Poisson equation example. """
|
""" Poisson problem. """
|
||||||
import numpy as np
|
|
||||||
import torch
|
|
||||||
|
|
||||||
from pina.problem import SpatialProblem
|
|
||||||
from pina.operators import laplacian
|
|
||||||
from pina import Condition, Span
|
|
||||||
|
|
||||||
# ===================================================== #
|
# ===================================================== #
|
||||||
# #
|
# #
|
||||||
@@ -17,39 +12,46 @@ from pina import Condition, Span
|
|||||||
# ===================================================== #
|
# ===================================================== #
|
||||||
|
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from pina.geometry import CartesianDomain
|
||||||
|
from pina import Condition
|
||||||
|
from pina.problem import SpatialProblem
|
||||||
|
from pina.operators import laplacian
|
||||||
|
from pina.equation import FixedValue, Equation
|
||||||
|
|
||||||
|
|
||||||
class Poisson(SpatialProblem):
|
class Poisson(SpatialProblem):
|
||||||
|
|
||||||
# assign output/ spatial variables
|
|
||||||
output_variables = ['u']
|
output_variables = ['u']
|
||||||
spatial_domain = Span({'x': [0, 1], 'y': [0, 1]})
|
spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})
|
||||||
|
|
||||||
# define the laplace equation
|
|
||||||
def laplace_equation(input_, output_):
|
def laplace_equation(input_, output_):
|
||||||
force_term = (torch.sin(input_.extract(['x'])*torch.pi) *
|
force_term = (torch.sin(input_.extract(['x'])*torch.pi) *
|
||||||
torch.sin(input_.extract(['y'])*torch.pi))
|
torch.sin(input_.extract(['y'])*torch.pi))
|
||||||
delta_u = laplacian(output_.extract(['u']), input_)
|
nabla_u = laplacian(output_.extract(['u']), input_)
|
||||||
return delta_u - force_term
|
return nabla_u - force_term
|
||||||
|
|
||||||
# define nill dirichlet boundary conditions
|
|
||||||
def nil_dirichlet(input_, output_):
|
|
||||||
value = 0.0
|
|
||||||
return output_.extract(['u']) - value
|
|
||||||
|
|
||||||
# problem condition statement
|
|
||||||
conditions = {
|
conditions = {
|
||||||
'gamma1': Condition(location=Span({'x': [0, 1], 'y': 1}), function=nil_dirichlet),
|
'gamma1': Condition(
|
||||||
'gamma2': Condition(location=Span({'x': [0, 1], 'y': 0}), function=nil_dirichlet),
|
location=CartesianDomain({'x': [0, 1], 'y': 1}),
|
||||||
'gamma3': Condition(location=Span({'x': 1, 'y': [0, 1]}),function=nil_dirichlet),
|
equation=FixedValue(0.0)),
|
||||||
'gamma4': Condition(location=Span({'x': 0, 'y': [0, 1]}), function=nil_dirichlet),
|
'gamma2': Condition(
|
||||||
'D': Condition(location=Span({'x': [0, 1], 'y': [0, 1]}), function=laplace_equation),
|
location=CartesianDomain({'x': [0, 1], 'y': 0}),
|
||||||
|
equation=FixedValue(0.0)),
|
||||||
|
'gamma3': Condition(
|
||||||
|
location=CartesianDomain({'x': 1, 'y': [0, 1]}),
|
||||||
|
equation=FixedValue(0.0)),
|
||||||
|
'gamma4': Condition(
|
||||||
|
location=CartesianDomain({'x': 0, 'y': [0, 1]}),
|
||||||
|
equation=FixedValue(0.0)),
|
||||||
|
'D': Condition(
|
||||||
|
location=CartesianDomain({'x': [0, 1], 'y': [0, 1]}),
|
||||||
|
equation=Equation(laplace_equation)),
|
||||||
}
|
}
|
||||||
|
|
||||||
# real poisson solution
|
|
||||||
def poisson_sol(self, pts):
|
def poisson_sol(self, pts):
|
||||||
return -(
|
return -(
|
||||||
torch.sin(pts.extract(['x'])*torch.pi) *
|
torch.sin(pts.extract(['x'])*torch.pi) *
|
||||||
torch.sin(pts.extract(['y'])*torch.pi)
|
torch.sin(pts.extract(['y'])*torch.pi)
|
||||||
)/(2*torch.pi**2)
|
)/(2*torch.pi**2)
|
||||||
# return -(np.sin(x*np.pi)*np.sin(y*np.pi))/(2*np.pi**2)
|
|
||||||
|
|
||||||
truth_solution = poisson_sol
|
truth_solution = poisson_sol
|
||||||
|
|||||||
@@ -1,9 +1,11 @@
|
|||||||
import numpy as np
|
""" Navier Stokes Problem """
|
||||||
import torch
|
|
||||||
|
|
||||||
|
import torch
|
||||||
from pina.problem import SpatialProblem
|
from pina.problem import SpatialProblem
|
||||||
from pina.operators import laplacian, grad, div
|
from pina.operators import laplacian, grad, div
|
||||||
from pina import Condition, Span, LabelTensor
|
from pina import Condition, LabelTensor
|
||||||
|
from pina.geometry import CartesianDomain
|
||||||
|
from pina.equation import SystemEquation, Equation
|
||||||
|
|
||||||
# ===================================================== #
|
# ===================================================== #
|
||||||
# #
|
# #
|
||||||
@@ -21,7 +23,7 @@ class Stokes(SpatialProblem):
|
|||||||
|
|
||||||
# assign output/ spatial variables
|
# assign output/ spatial variables
|
||||||
output_variables = ['ux', 'uy', 'p']
|
output_variables = ['ux', 'uy', 'p']
|
||||||
spatial_domain = Span({'x': [-2, 2], 'y': [-1, 1]})
|
spatial_domain = CartesianDomain({'x': [-2, 2], 'y': [-1, 1]})
|
||||||
|
|
||||||
# define the momentum equation
|
# define the momentum equation
|
||||||
def momentum(input_, output_):
|
def momentum(input_, output_):
|
||||||
@@ -49,17 +51,9 @@ class Stokes(SpatialProblem):
|
|||||||
|
|
||||||
# problem condition statement
|
# problem condition statement
|
||||||
conditions = {
|
conditions = {
|
||||||
'gamma_top': Condition(location=Span({'x': [-2, 2], 'y': 1}), function=wall),
|
'gamma_top': Condition(location=CartesianDomain({'x': [-2, 2], 'y': 1}), equation=Equation(wall)),
|
||||||
'gamma_bot': Condition(location=Span({'x': [-2, 2], 'y': -1}), function=wall),
|
'gamma_bot': Condition(location=CartesianDomain({'x': [-2, 2], 'y': -1}), equation=Equation(wall)),
|
||||||
'gamma_out': Condition(location=Span({'x': 2, 'y': [-1, 1]}), function=outlet),
|
'gamma_out': Condition(location=CartesianDomain({'x': 2, 'y': [-1, 1]}), equation=Equation(outlet)),
|
||||||
'gamma_in': Condition(location=Span({'x': -2, 'y': [-1, 1]}), function=inlet),
|
'gamma_in': Condition(location=CartesianDomain({'x': -2, 'y': [-1, 1]}), equation=Equation(inlet)),
|
||||||
'D1': Condition(location=Span({'x': [-2, 2], 'y': [-1, 1]}), function=momentum),
|
'D': Condition(location=CartesianDomain({'x': [-2, 2], 'y': [-1, 1]}), equation=SystemEquation([momentum, continuity]))
|
||||||
'D2': Condition(location=Span({'x': [-2, 2], 'y': [-1, 1]}), function=continuity),
|
|
||||||
}
|
}
|
||||||
# conditions = {
|
|
||||||
# 'gamma_top': Condition(location=Span({'x': [-2, 2], 'y': 1}), function=wall),
|
|
||||||
# 'gamma_bot': Condition(location=Span({'x': [-2, 2], 'y': -1}), function=wall),
|
|
||||||
# 'gamma_out': Condition(location=Span({'x': 2, 'y': [-1, 1]}), function=outlet),
|
|
||||||
# 'gamma_in': Condition(location=Span({'x': -2, 'y': [-1, 1]}), function=inlet),
|
|
||||||
# 'D': Condition(location=Span({'x': [-2, 2], 'y': [-1, 1]}), function=[momentum, continuity]),
|
|
||||||
# }
|
|
||||||
|
|||||||
57
examples/problems/wave.py
Normal file
57
examples/problems/wave.py
Normal file
@@ -0,0 +1,57 @@
|
|||||||
|
""" Wave equation Problem """
|
||||||
|
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from pina.geometry import CartesianDomain
|
||||||
|
from pina import Condition
|
||||||
|
from pina.problem import SpatialProblem, TimeDependentProblem
|
||||||
|
from pina.operators import laplacian, grad
|
||||||
|
from pina.equation import FixedValue, Equation
|
||||||
|
|
||||||
|
|
||||||
|
# ===================================================== #
|
||||||
|
# #
|
||||||
|
# This script implements the two dimensional #
|
||||||
|
# Wave equation. The Wave class is defined inheriting #
|
||||||
|
# from SpatialProblem and TimeDependentProblem. Let #
|
||||||
|
# u --> field variable #
|
||||||
|
# x,y --> spatial variables #
|
||||||
|
# t --> temporal variables #
|
||||||
|
# the velocity coefficient is set to one. #
|
||||||
|
# #
|
||||||
|
# ===================================================== #
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
class Wave(TimeDependentProblem, SpatialProblem):
|
||||||
|
output_variables = ['u']
|
||||||
|
spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})
|
||||||
|
temporal_domain = CartesianDomain({'t': [0, 1]})
|
||||||
|
|
||||||
|
def wave_equation(input_, output_):
|
||||||
|
u_t = grad(output_, input_, components=['u'], d=['t'])
|
||||||
|
u_tt = grad(u_t, input_, components=['dudt'], d=['t'])
|
||||||
|
nabla_u = laplacian(output_, input_, components=['u'], d=['x', 'y'])
|
||||||
|
return nabla_u - u_tt
|
||||||
|
|
||||||
|
def initial_condition(input_, output_):
|
||||||
|
u_expected = (torch.sin(torch.pi*input_.extract(['x'])) *
|
||||||
|
torch.sin(torch.pi*input_.extract(['y'])))
|
||||||
|
return output_.extract(['u']) - u_expected
|
||||||
|
|
||||||
|
conditions = {
|
||||||
|
'gamma1': Condition(location=CartesianDomain({'x': [0, 1], 'y': 1, 't': [0, 1]}), equation=FixedValue(0.)),
|
||||||
|
'gamma2': Condition(location=CartesianDomain({'x': [0, 1], 'y': 0, 't': [0, 1]}), equation=FixedValue(0.)),
|
||||||
|
'gamma3': Condition(location=CartesianDomain({'x': 1, 'y': [0, 1], 't': [0, 1]}), equation=FixedValue(0.)),
|
||||||
|
'gamma4': Condition(location=CartesianDomain({'x': 0, 'y': [0, 1], 't': [0, 1]}), equation=FixedValue(0.)),
|
||||||
|
't0': Condition(location=CartesianDomain({'x': [0, 1], 'y': [0, 1], 't': 0}), equation=Equation(initial_condition)),
|
||||||
|
'D': Condition(location=CartesianDomain({'x': [0, 1], 'y': [0, 1], 't': [0, 1]}), equation=Equation(wave_equation)),
|
||||||
|
}
|
||||||
|
|
||||||
|
def wave_sol(self, pts):
|
||||||
|
sqrt_2 = torch.sqrt(torch.tensor(2.))
|
||||||
|
return (torch.sin(torch.pi*pts.extract(['x'])) *
|
||||||
|
torch.sin(torch.pi*pts.extract(['y'])) *
|
||||||
|
torch.cos(sqrt_2*torch.pi*pts.extract(['t'])))
|
||||||
|
|
||||||
|
truth_solution = wave_sol
|
||||||
@@ -1,10 +1,14 @@
|
|||||||
"""Run PINA on Burgers equation"""
|
""" Run PINA on Burgers equation. """
|
||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
import torch
|
import torch
|
||||||
from torch.nn import Softplus
|
from torch.nn import Softplus
|
||||||
|
|
||||||
from pina import PINN, Plotter, LabelTensor
|
from pina import LabelTensor
|
||||||
from pina.model import FeedForward
|
from pina.model import FeedForward
|
||||||
|
from pina.solvers import PINN
|
||||||
|
from pina.plotter import Plotter
|
||||||
|
from pina.trainer import Trainer
|
||||||
from problems.burgers import Burgers1D
|
from problems.burgers import Burgers1D
|
||||||
|
|
||||||
|
|
||||||
@@ -13,9 +17,8 @@ class myFeature(torch.nn.Module):
|
|||||||
Feature: sin(pi*x)
|
Feature: sin(pi*x)
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, idx):
|
def __init__(self):
|
||||||
super(myFeature, self).__init__()
|
super(myFeature, self).__init__()
|
||||||
self.idx = idx
|
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
return LabelTensor(torch.sin(torch.pi * x.extract(['x'])), ['sin(x)'])
|
return LabelTensor(torch.sin(torch.pi * x.extract(['x'])), ['sin(x)'])
|
||||||
@@ -24,40 +27,47 @@ class myFeature(torch.nn.Module):
|
|||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
|
||||||
parser = argparse.ArgumentParser(description="Run PINA")
|
parser = argparse.ArgumentParser(description="Run PINA")
|
||||||
group = parser.add_mutually_exclusive_group(required=True)
|
parser.add_argument("--load", help="directory to save or load file", type=str)
|
||||||
group.add_argument("-s", "-save", action="store_true")
|
parser.add_argument("--features", help="extra features", type=int)
|
||||||
group.add_argument("-l", "-load", action="store_true")
|
parser.add_argument("--epochs", help="extra features", type=int, default=1000)
|
||||||
parser.add_argument("id_run", help="number of run", type=int)
|
|
||||||
parser.add_argument("features", help="extra features", type=int)
|
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
feat = [myFeature(0)] if args.features else []
|
if args.features is None:
|
||||||
|
args.features = 0
|
||||||
|
|
||||||
|
# extra features
|
||||||
|
feat = [myFeature()] if args.features else []
|
||||||
|
|
||||||
|
# create problem and discretise domain
|
||||||
burgers_problem = Burgers1D()
|
burgers_problem = Burgers1D()
|
||||||
|
burgers_problem.discretise_domain(n=200, mode='grid', variables = 't', locations=['D'])
|
||||||
|
burgers_problem.discretise_domain(n=20, mode='grid', variables = 'x', locations=['D'])
|
||||||
|
burgers_problem.discretise_domain(n=150, mode='random', locations=['gamma1', 'gamma2', 't0'])
|
||||||
|
|
||||||
|
# create model
|
||||||
model = FeedForward(
|
model = FeedForward(
|
||||||
layers=[30, 20, 10, 5],
|
layers=[30, 20, 10, 5],
|
||||||
output_variables=burgers_problem.output_variables,
|
output_dimensions=len(burgers_problem.output_variables),
|
||||||
input_variables=burgers_problem.input_variables,
|
input_dimensions=len(burgers_problem.input_variables) + len(feat),
|
||||||
func=Softplus,
|
func=Softplus
|
||||||
extra_features=feat,
|
|
||||||
)
|
)
|
||||||
|
|
||||||
|
# create solver
|
||||||
pinn = PINN(
|
pinn = PINN(
|
||||||
burgers_problem,
|
problem=burgers_problem,
|
||||||
model,
|
model=model,
|
||||||
lr=0.006,
|
extra_features=feat,
|
||||||
error_norm='mse',
|
optimizer_kwargs={'lr' : 0.006}
|
||||||
regularizer=0)
|
)
|
||||||
|
|
||||||
if args.s:
|
# create trainer
|
||||||
pinn.span_pts(
|
directory = 'pina.burger_extrafeats_{}'.format(bool(args.features))
|
||||||
{'n': 200, 'mode': 'grid', 'variables': 't'},
|
trainer = Trainer(solver=pinn, accelerator='cpu', max_epochs=args.epochs, default_root_dir=directory)
|
||||||
{'n': 20, 'mode': 'grid', 'variables': 'x'},
|
|
||||||
locations=['D'])
|
|
||||||
pinn.span_pts(150, 'random', location=['gamma1', 'gamma2', 't0'])
|
if args.load:
|
||||||
pinn.train(5000, 100)
|
pinn = PINN.load_from_checkpoint(checkpoint_path=args.load, problem=burgers_problem, model=model)
|
||||||
pinn.save_state('pina.burger.{}.{}'.format(args.id_run, args.features))
|
|
||||||
else:
|
|
||||||
pinn.load_state('pina.burger.{}.{}'.format(args.id_run, args.features))
|
|
||||||
plotter = Plotter()
|
plotter = Plotter()
|
||||||
plotter.plot(pinn)
|
plotter.plot(pinn)
|
||||||
|
else:
|
||||||
|
trainer.train()
|
||||||
|
|||||||
@@ -1,67 +1,53 @@
|
|||||||
|
""" Run PINA on ODE equation. """
|
||||||
import argparse
|
import argparse
|
||||||
|
import torch
|
||||||
from torch.nn import Softplus
|
from torch.nn import Softplus
|
||||||
|
|
||||||
from pina.model import FeedForward
|
from pina.model import FeedForward
|
||||||
from pina import Condition, CartesianDomain, Plotter, PINN
|
from pina.solvers import PINN
|
||||||
|
from pina.plotter import Plotter
|
||||||
|
from pina.trainer import Trainer
|
||||||
|
from problems.first_order_ode import FirstOrderODE
|
||||||
|
|
||||||
|
|
||||||
class FirstOrderODE(SpatialProblem):
|
|
||||||
|
|
||||||
x_rng = [0, 5]
|
|
||||||
output_variables = ['y']
|
|
||||||
spatial_domain = CartesianDomain({'x': x_rng})
|
|
||||||
|
|
||||||
def ode(input_, output_):
|
|
||||||
y = output_
|
|
||||||
x = input_
|
|
||||||
return grad(y, x) + y - x
|
|
||||||
|
|
||||||
def fixed(input_, output_):
|
|
||||||
exp_value = 1.
|
|
||||||
return output_ - exp_value
|
|
||||||
|
|
||||||
def solution(self, input_):
|
|
||||||
x = input_
|
|
||||||
return x - 1.0 + 2*torch.exp(-x)
|
|
||||||
|
|
||||||
conditions = {
|
|
||||||
'bc': Condition(CartesianDomain({'x': x_rng[0]}), fixed),
|
|
||||||
'dd': Condition(CartesianDomain({'x': x_rng}), ode),
|
|
||||||
}
|
|
||||||
truth_solution = solution
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
|
||||||
parser = argparse.ArgumentParser(description="Run PINA")
|
parser = argparse.ArgumentParser(description="Run PINA")
|
||||||
group = parser.add_mutually_exclusive_group(required=True)
|
parser.add_argument("--load", help="directory to save or load file", type=str)
|
||||||
group.add_argument("-s", "-save", action="store_true")
|
parser.add_argument("--epochs", help="extra features", type=int, default=3000)
|
||||||
group.add_argument("-l", "-load", action="store_true")
|
|
||||||
parser.add_argument("id_run", help="number of run", type=int)
|
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
# define Problem + Model + PINN
|
|
||||||
|
# create problem and discretise domain
|
||||||
problem = FirstOrderODE()
|
problem = FirstOrderODE()
|
||||||
|
problem.discretise_domain(n=500, mode='grid', variables = 'x', locations=['D'])
|
||||||
|
problem.discretise_domain(n=1, mode='grid', variables = 'x', locations=['BC'])
|
||||||
|
|
||||||
|
# create model
|
||||||
model = FeedForward(
|
model = FeedForward(
|
||||||
layers=[4]*2,
|
layers=[10, 10],
|
||||||
output_variables=problem.output_variables,
|
output_dimensions=len(problem.output_variables),
|
||||||
input_variables=problem.input_variables,
|
input_dimensions=len(problem.input_variables),
|
||||||
func=Softplus,
|
func=Softplus
|
||||||
)
|
)
|
||||||
pinn = PINN(problem, model, lr=0.03, error_norm='mse', regularizer=0)
|
|
||||||
|
|
||||||
if args.s:
|
# create solver
|
||||||
|
pinn = PINN(
|
||||||
|
problem=problem,
|
||||||
|
model=model,
|
||||||
|
extra_features=None,
|
||||||
|
optimizer_kwargs={'lr' : 0.001}
|
||||||
|
)
|
||||||
|
|
||||||
pinn.span_pts(
|
# create trainer
|
||||||
{'variables': ['x'], 'mode': 'grid', 'n': 1}, locations=['bc'])
|
directory = 'pina.ode'
|
||||||
pinn.span_pts(
|
trainer = Trainer(solver=pinn, accelerator='cpu', max_epochs=args.epochs, default_root_dir=directory)
|
||||||
{'variables': ['x'], 'mode': 'grid', 'n': 30}, locations=['dd'])
|
|
||||||
Plotter().plot_samples(pinn, ['x'])
|
|
||||||
pinn.train(1200, 50)
|
|
||||||
pinn.save_state('pina.ode')
|
|
||||||
|
|
||||||
else:
|
|
||||||
pinn.load_state('pina.ode')
|
if args.load:
|
||||||
|
pinn = PINN.load_from_checkpoint(checkpoint_path=args.load, problem=problem, model=model)
|
||||||
plotter = Plotter()
|
plotter = Plotter()
|
||||||
plotter.plot(pinn, components=['y'])
|
plotter.plot(pinn)
|
||||||
|
else:
|
||||||
|
trainer.train()
|
||||||
88
examples/run_parametric_elliptic_optimal.py
Normal file
88
examples/run_parametric_elliptic_optimal.py
Normal file
@@ -0,0 +1,88 @@
|
|||||||
|
import argparse
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
from torch.nn import Softplus
|
||||||
|
|
||||||
|
from pina import LabelTensor
|
||||||
|
from pina.solvers import PINN
|
||||||
|
from pina.model import MultiFeedForward
|
||||||
|
from pina.plotter import Plotter
|
||||||
|
from pina.trainer import Trainer
|
||||||
|
from problems.parametric_elliptic_optimal_control import (
|
||||||
|
ParametricEllipticOptimalControl)
|
||||||
|
|
||||||
|
|
||||||
|
class myFeature(torch.nn.Module):
|
||||||
|
"""
|
||||||
|
Feature: sin(x)
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
super(myFeature, self).__init__()
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
t = (-x.extract(['x1'])**2+1) * (-x.extract(['x2'])**2+1)
|
||||||
|
return LabelTensor(t, ['k0'])
|
||||||
|
|
||||||
|
|
||||||
|
class CustomMultiDFF(MultiFeedForward):
|
||||||
|
|
||||||
|
def __init__(self, dff_dict):
|
||||||
|
super().__init__(dff_dict)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
out = self.uu(x)
|
||||||
|
out.labels = ['u', 'y']
|
||||||
|
p = LabelTensor(
|
||||||
|
(out.extract(['u']) * x.extract(['alpha'])), ['p'])
|
||||||
|
return out.append(p)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser(description="Run PINA")
|
||||||
|
parser.add_argument("--load", help="directory to save or load file", type=str)
|
||||||
|
parser.add_argument("--features", help="extra features", type=int)
|
||||||
|
parser.add_argument("--epochs", help="extra features", type=int, default=1000)
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
if args.features is None:
|
||||||
|
args.features = 0
|
||||||
|
|
||||||
|
# extra features
|
||||||
|
feat = [myFeature()] if args.features else []
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
# create problem and discretise domain
|
||||||
|
opc = ParametricEllipticOptimalControl()
|
||||||
|
opc.discretise_domain(n= 100, mode='random', variables=['x1', 'x2'], locations=['D'])
|
||||||
|
opc.discretise_domain(n= 5, mode='random', variables=['mu', 'alpha'], locations=['D'])
|
||||||
|
opc.discretise_domain(n= 20, mode='random', variables=['x1', 'x2'], locations=['gamma1', 'gamma2', 'gamma3', 'gamma4'])
|
||||||
|
opc.discretise_domain(n= 5, mode='random', variables=['mu', 'alpha'], locations=['gamma1', 'gamma2', 'gamma3', 'gamma4'])
|
||||||
|
|
||||||
|
# create model
|
||||||
|
model = CustomMultiDFF(
|
||||||
|
{
|
||||||
|
'uu': {
|
||||||
|
'input_dimensions': 4 + len(feat),
|
||||||
|
'output_dimensions': 2,
|
||||||
|
'layers': [40, 40, 20],
|
||||||
|
'func': Softplus,
|
||||||
|
},
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
# create PINN
|
||||||
|
pinn = PINN(problem=opc, model=model, optimizer_kwargs={'lr' : 0.002}, extra_features=feat)
|
||||||
|
|
||||||
|
# create trainer
|
||||||
|
directory = 'pina.parametric_optimal_control_{}'.format(bool(args.features))
|
||||||
|
trainer = Trainer(solver=pinn, accelerator='cpu', max_epochs=args.epochs, default_root_dir=directory)
|
||||||
|
|
||||||
|
|
||||||
|
if args.load:
|
||||||
|
pinn = PINN.load_from_checkpoint(checkpoint_path=args.load, problem=opc, model=model, extra_features=feat)
|
||||||
|
plotter = Plotter()
|
||||||
|
plotter.plot(pinn, fixed_variables={'mu' : 1 , 'alpha' : 0.001}, components='y')
|
||||||
|
else:
|
||||||
|
trainer.train()
|
||||||
@@ -1,87 +0,0 @@
|
|||||||
import argparse
|
|
||||||
import numpy as np
|
|
||||||
import torch
|
|
||||||
from torch.nn import Softplus
|
|
||||||
|
|
||||||
from pina import PINN, LabelTensor, Plotter
|
|
||||||
from pina.model import MultiFeedForward
|
|
||||||
from problems.parametric_elliptic_optimal_control_alpha_variable import (
|
|
||||||
ParametricEllipticOptimalControl)
|
|
||||||
|
|
||||||
|
|
||||||
class myFeature(torch.nn.Module):
|
|
||||||
"""
|
|
||||||
Feature: sin(x)
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self):
|
|
||||||
super(myFeature, self).__init__()
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
t = (-x.extract(['x1'])**2+1) * (-x.extract(['x2'])**2+1)
|
|
||||||
return LabelTensor(t, ['k0'])
|
|
||||||
|
|
||||||
|
|
||||||
class CustomMultiDFF(MultiFeedForward):
|
|
||||||
|
|
||||||
def __init__(self, dff_dict):
|
|
||||||
super().__init__(dff_dict)
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
out = self.uu(x)
|
|
||||||
p = LabelTensor(
|
|
||||||
(out.extract(['u_param']) * x.extract(['alpha'])), ['p'])
|
|
||||||
return out.append(p)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
|
|
||||||
parser = argparse.ArgumentParser(description="Run PINA")
|
|
||||||
group = parser.add_mutually_exclusive_group(required=True)
|
|
||||||
group.add_argument("-s", "-save", action="store_true")
|
|
||||||
group.add_argument("-l", "-load", action="store_true")
|
|
||||||
args = parser.parse_args()
|
|
||||||
|
|
||||||
opc = ParametricEllipticOptimalControl()
|
|
||||||
model = CustomMultiDFF(
|
|
||||||
{
|
|
||||||
'uu': {
|
|
||||||
'input_variables': ['x1', 'x2', 'mu', 'alpha'],
|
|
||||||
'output_variables': ['u_param', 'y'],
|
|
||||||
'layers': [40, 40, 20],
|
|
||||||
'func': Softplus,
|
|
||||||
'extra_features': [myFeature()],
|
|
||||||
},
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
pinn = PINN(
|
|
||||||
opc,
|
|
||||||
model,
|
|
||||||
lr=0.002,
|
|
||||||
error_norm='mse',
|
|
||||||
regularizer=1e-8)
|
|
||||||
|
|
||||||
if args.s:
|
|
||||||
|
|
||||||
pinn.span_pts(
|
|
||||||
{'variables': ['x1', 'x2'], 'mode': 'random', 'n': 100},
|
|
||||||
{'variables': ['mu', 'alpha'], 'mode': 'grid', 'n': 5},
|
|
||||||
locations=['D'])
|
|
||||||
pinn.span_pts(
|
|
||||||
{'variables': ['x1', 'x2'], 'mode': 'grid', 'n': 20},
|
|
||||||
{'variables': ['mu', 'alpha'], 'mode': 'grid', 'n': 5},
|
|
||||||
locations=['gamma1', 'gamma2', 'gamma3', 'gamma4'])
|
|
||||||
|
|
||||||
pinn.train(1000, 20)
|
|
||||||
pinn.save_state('pina.ocp')
|
|
||||||
|
|
||||||
else:
|
|
||||||
pinn.load_state('pina.ocp')
|
|
||||||
plotter = Plotter()
|
|
||||||
plotter.plot(pinn, components='y',
|
|
||||||
fixed_variables={'alpha': 0.01, 'mu': 1.0})
|
|
||||||
plotter.plot(pinn, components='u_param',
|
|
||||||
fixed_variables={'alpha': 0.01, 'mu': 1.0})
|
|
||||||
plotter.plot(pinn, components='p', fixed_variables={
|
|
||||||
'alpha': 0.01, 'mu': 1.0})
|
|
||||||
@@ -1,7 +1,8 @@
|
|||||||
import argparse
|
import argparse
|
||||||
import torch
|
import torch
|
||||||
from torch.nn import Softplus
|
from torch.nn import Softplus
|
||||||
from pina import Plotter, LabelTensor, PINN
|
from pina import Plotter, LabelTensor, Trainer
|
||||||
|
from pina.solvers import PINN
|
||||||
from pina.model import FeedForward
|
from pina.model import FeedForward
|
||||||
from problems.parametric_poisson import ParametricPoisson
|
from problems.parametric_poisson import ParametricPoisson
|
||||||
|
|
||||||
@@ -25,41 +26,48 @@ class myFeature(torch.nn.Module):
|
|||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
|
||||||
parser = argparse.ArgumentParser(description="Run PINA")
|
parser = argparse.ArgumentParser(description="Run PINA")
|
||||||
group = parser.add_mutually_exclusive_group(required=True)
|
parser.add_argument("--load", help="directory to save or load file", type=str)
|
||||||
group.add_argument("-s", "-save", action="store_true")
|
parser.add_argument("--features", help="extra features", type=int)
|
||||||
group.add_argument("-l", "-load", action="store_true")
|
parser.add_argument("--epochs", help="extra features", type=int, default=1000)
|
||||||
parser.add_argument("id_run", help="number of run", type=int)
|
|
||||||
parser.add_argument("features", help="extra features", type=int)
|
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
if args.features is None:
|
||||||
|
args.features = 0
|
||||||
|
|
||||||
|
# extra features
|
||||||
feat = [myFeature()] if args.features else []
|
feat = [myFeature()] if args.features else []
|
||||||
|
|
||||||
poisson_problem = ParametricPoisson()
|
# create problem and discretise domain
|
||||||
|
ppoisson_problem = ParametricPoisson()
|
||||||
|
ppoisson_problem.discretise_domain(n=100, mode='random', variables = ['x', 'y'], locations=['D'])
|
||||||
|
ppoisson_problem.discretise_domain(n=100, mode='random', variables = ['mu1', 'mu2'], locations=['D'])
|
||||||
|
ppoisson_problem.discretise_domain(n=20, mode='random', variables = ['x', 'y'], locations=['gamma1', 'gamma2', 'gamma3', 'gamma4'])
|
||||||
|
ppoisson_problem.discretise_domain(n=5, mode='random', variables = ['mu1', 'mu2'], locations=['gamma1', 'gamma2', 'gamma3', 'gamma4'])
|
||||||
|
|
||||||
|
# create model
|
||||||
model = FeedForward(
|
model = FeedForward(
|
||||||
layers=[10, 10, 10],
|
layers=[10, 10, 10],
|
||||||
output_variables=poisson_problem.output_variables,
|
output_dimensions=len(ppoisson_problem.output_variables),
|
||||||
input_variables=poisson_problem.input_variables,
|
input_dimensions=len(ppoisson_problem.input_variables) + len(feat),
|
||||||
func=Softplus,
|
func=Softplus
|
||||||
extra_features=feat
|
|
||||||
)
|
)
|
||||||
|
|
||||||
pinn = PINN(poisson_problem, model, lr=0.006, regularizer=1e-6)
|
# create solver
|
||||||
|
pinn = PINN(
|
||||||
|
problem=ppoisson_problem,
|
||||||
|
model=model,
|
||||||
|
extra_features=feat,
|
||||||
|
optimizer_kwargs={'lr' : 0.006}
|
||||||
|
)
|
||||||
|
|
||||||
if args.s:
|
# create trainer
|
||||||
|
directory = 'pina.parametric_poisson_extrafeats_{}'.format(bool(args.features))
|
||||||
|
trainer = Trainer(solver=pinn, accelerator='cpu', max_epochs=args.epochs, default_root_dir=directory)
|
||||||
|
|
||||||
pinn.span_pts(
|
|
||||||
{'variables': ['x', 'y'], 'mode': 'random', 'n': 100},
|
|
||||||
{'variables': ['mu1', 'mu2'], 'mode': 'grid', 'n': 5},
|
|
||||||
locations=['D'])
|
|
||||||
pinn.span_pts(
|
|
||||||
{'variables': ['x', 'y'], 'mode': 'grid', 'n': 20},
|
|
||||||
{'variables': ['mu1', 'mu2'], 'mode': 'grid', 'n': 5},
|
|
||||||
locations=['gamma1', 'gamma2', 'gamma3', 'gamma4'])
|
|
||||||
pinn.train(10000, 100)
|
|
||||||
pinn.save_state('pina.poisson_param')
|
|
||||||
|
|
||||||
else:
|
if args.load:
|
||||||
pinn.load_state('pina.poisson_param')
|
pinn = PINN.load_from_checkpoint(checkpoint_path=args.load, problem=ppoisson_problem, model=model, extra_features=feat)
|
||||||
plotter = Plotter()
|
plotter = Plotter()
|
||||||
plotter.plot(pinn, fixed_variables={'mu1': 0, 'mu2': 1}, levels=21)
|
plotter.plot(pinn, fixed_variables={'mu1': 1, 'mu2': -1})
|
||||||
plotter.plot(pinn, fixed_variables={'mu1': 1, 'mu2': -1}, levels=21)
|
else:
|
||||||
|
trainer.train()
|
||||||
|
|||||||
@@ -1,12 +1,13 @@
|
|||||||
|
""" Run PINA on ODE equation. """
|
||||||
import argparse
|
import argparse
|
||||||
import sys
|
|
||||||
import numpy as np
|
|
||||||
import torch
|
import torch
|
||||||
from torch.nn import ReLU, Tanh, Softplus
|
from torch.nn import Softplus
|
||||||
|
|
||||||
from pina import PINN, LabelTensor, Plotter
|
from pina import LabelTensor
|
||||||
from pina.model import FeedForward
|
from pina.model import FeedForward
|
||||||
from pina.adaptive_functions import AdaptiveSin, AdaptiveCos, AdaptiveTanh
|
from pina.solvers import PINN
|
||||||
|
from pina.plotter import Plotter
|
||||||
|
from pina.trainer import Trainer
|
||||||
from problems.poisson import Poisson
|
from problems.poisson import Poisson
|
||||||
|
|
||||||
|
|
||||||
@@ -26,39 +27,47 @@ class myFeature(torch.nn.Module):
|
|||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
|
||||||
parser = argparse.ArgumentParser(description="Run PINA")
|
parser = argparse.ArgumentParser(description="Run PINA")
|
||||||
group = parser.add_mutually_exclusive_group(required=True)
|
parser.add_argument("--load", help="directory to save or load file", type=str)
|
||||||
group.add_argument("-s", "-save", action="store_true")
|
parser.add_argument("--features", help="extra features", type=int)
|
||||||
group.add_argument("-l", "-load", action="store_true")
|
parser.add_argument("--epochs", help="extra features", type=int, default=1000)
|
||||||
parser.add_argument("id_run", help="number of run", type=int)
|
|
||||||
parser.add_argument("features", help="extra features", type=int)
|
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
feat = [myFeature()] if args.features else []
|
if args.features is None:
|
||||||
|
args.features = 0
|
||||||
|
|
||||||
poisson_problem = Poisson()
|
# extra features
|
||||||
|
feat = [myFeature()] if args.features else []
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
# create problem and discretise domain
|
||||||
|
problem = Poisson()
|
||||||
|
problem.discretise_domain(n=20, mode='grid', locations=['D'])
|
||||||
|
problem.discretise_domain(n=100, mode='random', locations=['gamma1', 'gamma2', 'gamma3', 'gamma4'])
|
||||||
|
|
||||||
|
# create model
|
||||||
model = FeedForward(
|
model = FeedForward(
|
||||||
layers=[20, 20],
|
layers=[10, 10],
|
||||||
output_variables=poisson_problem.output_variables,
|
output_dimensions=len(problem.output_variables),
|
||||||
input_variables=poisson_problem.input_variables,
|
input_dimensions=len(problem.input_variables) + len(feat),
|
||||||
func=Softplus,
|
func=Softplus
|
||||||
extra_features=feat
|
|
||||||
)
|
)
|
||||||
|
|
||||||
|
# create solver
|
||||||
pinn = PINN(
|
pinn = PINN(
|
||||||
poisson_problem,
|
problem=problem,
|
||||||
model,
|
model=model,
|
||||||
lr=0.03,
|
extra_features=feat,
|
||||||
error_norm='mse',
|
optimizer_kwargs={'lr' : 0.001}
|
||||||
regularizer=1e-8)
|
)
|
||||||
|
|
||||||
if args.s:
|
# create trainer
|
||||||
|
directory = 'pina.parametric_poisson_extrafeats_{}'.format(bool(args.features))
|
||||||
|
trainer = Trainer(solver=pinn, accelerator='cpu', max_epochs=args.epochs, default_root_dir=directory)
|
||||||
|
|
||||||
pinn.span_pts(20, 'grid', locations=['gamma1', 'gamma2', 'gamma3', 'gamma4'])
|
|
||||||
pinn.span_pts(20, 'grid', locations=['D'])
|
|
||||||
pinn.train(5000, 100)
|
|
||||||
pinn.save_state('pina.poisson')
|
|
||||||
|
|
||||||
else:
|
if args.load:
|
||||||
pinn.load_state('pina.poisson')
|
pinn = PINN.load_from_checkpoint(checkpoint_path=args.load, problem=problem, model=model, extra_features=feat)
|
||||||
plotter = Plotter()
|
plotter = Plotter()
|
||||||
plotter.plot(pinn)
|
plotter.plot(pinn)
|
||||||
|
else:
|
||||||
|
trainer.train()
|
||||||
@@ -1,120 +1,75 @@
|
|||||||
import argparse
|
import argparse
|
||||||
import logging
|
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
from problems.poisson import Poisson
|
from pina import Plotter, LabelTensor, Trainer
|
||||||
|
from pina.solvers import PINN
|
||||||
from pina import PINN, LabelTensor, Plotter
|
|
||||||
from pina.model import DeepONet, FeedForward
|
from pina.model import DeepONet, FeedForward
|
||||||
|
from problems.parametric_poisson import ParametricPoisson
|
||||||
|
|
||||||
|
|
||||||
class SinFeature(torch.nn.Module):
|
class myFeature(torch.nn.Module):
|
||||||
"""
|
"""
|
||||||
Feature: sin(x)
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, label):
|
|
||||||
super().__init__()
|
|
||||||
|
|
||||||
if not isinstance(label, (tuple, list)):
|
|
||||||
label = [label]
|
|
||||||
self._label = label
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
"""
|
|
||||||
Defines the computation performed at every call.
|
|
||||||
|
|
||||||
:param LabelTensor x: the input tensor.
|
|
||||||
:return: the output computed by the model.
|
|
||||||
:rtype: LabelTensor
|
|
||||||
"""
|
|
||||||
t = torch.sin(x.extract(self._label) * torch.pi)
|
|
||||||
return LabelTensor(t, [f"sin({self._label})"])
|
|
||||||
|
|
||||||
|
|
||||||
class myRBF(torch.nn.Module):
|
|
||||||
def __init__(self, input_):
|
|
||||||
|
|
||||||
super().__init__()
|
|
||||||
|
|
||||||
self.input_variables = [input_]
|
|
||||||
self.a = torch.nn.Parameter(torch.tensor([-.3]))
|
|
||||||
# self.b = torch.nn.Parameter(torch.tensor([0.5]))
|
|
||||||
self.b = torch.tensor([0.5])
|
|
||||||
self.c = torch.nn.Parameter(torch.tensor([.5]))
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
x = x.extract(self.input_variables)
|
|
||||||
result = self.a * torch.exp(-(x - self.b)**2/(self.c**2))
|
|
||||||
return result
|
|
||||||
|
|
||||||
|
|
||||||
class myModel(torch.nn.Module):
|
|
||||||
""" Model for the Poisson equation."""
|
|
||||||
|
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
|
super(myFeature, self).__init__()
|
||||||
super().__init__()
|
|
||||||
self.ffn_x = myRBF('x')
|
|
||||||
self.ffn_y = myRBF('y')
|
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
result = self.ffn_x(x) * self.ffn_y(x)
|
t = (
|
||||||
result.labels = ['u']
|
torch.exp(
|
||||||
return result
|
- 2*(x.extract(['x']) - x.extract(['mu1']))**2
|
||||||
|
- 2*(x.extract(['y']) - x.extract(['mu2']))**2
|
||||||
|
)
|
||||||
|
)
|
||||||
|
return LabelTensor(t, ['k0'])
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
parser = argparse.ArgumentParser(description="Run PINA")
|
|
||||||
parser.add_argument("-s", "--save", action="store_true")
|
|
||||||
parser.add_argument("-l", "--load", action="store_true")
|
|
||||||
parser.add_argument("id_run", help="Run ID", type=int)
|
|
||||||
|
|
||||||
parser.add_argument("--extra", help="Extra features", action="store_true")
|
parser = argparse.ArgumentParser(description="Run PINA")
|
||||||
|
parser.add_argument("--load", help="directory to save or load file", type=str)
|
||||||
|
parser.add_argument("--epochs", help="extra features", type=int, default=1000)
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
problem = Poisson()
|
|
||||||
|
|
||||||
# ffn_x = FeedForward(
|
# create problem and discretise domain
|
||||||
# input_variables=['x'], layers=[], output_variables=1,
|
ppoisson_problem = ParametricPoisson()
|
||||||
# func=torch.nn.Softplus,
|
ppoisson_problem.discretise_domain(n=100, mode='random', variables = ['x', 'y'], locations=['D'])
|
||||||
# extra_features=[SinFeature('x')]
|
ppoisson_problem.discretise_domain(n=100, mode='random', variables = ['mu1', 'mu2'], locations=['D'])
|
||||||
# )
|
ppoisson_problem.discretise_domain(n=20, mode='random', variables = ['x', 'y'], locations=['gamma1', 'gamma2', 'gamma3', 'gamma4'])
|
||||||
# ffn_y = FeedForward
|
ppoisson_problem.discretise_domain(n=5, mode='random', variables = ['mu1', 'mu2'], locations=['gamma1', 'gamma2', 'gamma3', 'gamma4'])
|
||||||
# input_variables=['y'], layers=[], output_variables=1,
|
|
||||||
# func=torch.nn.Softplus,
|
|
||||||
# extra_features=[SinFeature('y')]
|
|
||||||
# )
|
|
||||||
model = myModel()
|
|
||||||
test = torch.tensor([[0.0, 0.5]])
|
|
||||||
test.labels = ['x', 'y']
|
|
||||||
pinn = PINN(problem, model, lr=0.0001)
|
|
||||||
|
|
||||||
if args.save:
|
# create model
|
||||||
pinn.span_pts(
|
trunck = FeedForward(
|
||||||
20, "grid", locations=["gamma1", "gamma2", "gamma3", "gamma4"]
|
layers=[40, 40],
|
||||||
|
output_dimensions=1,
|
||||||
|
input_dimensions=2,
|
||||||
|
func=torch.nn.ReLU
|
||||||
)
|
)
|
||||||
pinn.span_pts(20, "grid", locations=["D"])
|
branch = FeedForward(
|
||||||
while True:
|
layers=[40, 40],
|
||||||
pinn.train(500, 50)
|
output_dimensions=1,
|
||||||
print(model.ffn_x.a)
|
input_dimensions=2,
|
||||||
print(model.ffn_x.b)
|
func=torch.nn.ReLU
|
||||||
print(model.ffn_x.c)
|
)
|
||||||
|
model = DeepONet(branch_net=branch,
|
||||||
|
trunk_net=trunck,
|
||||||
|
input_indeces_branch_net=['x', 'y'],
|
||||||
|
input_indeces_trunk_net=['mu1', 'mu2'])
|
||||||
|
|
||||||
xi = torch.linspace(0, 1, 64).reshape(-1,
|
# create solver
|
||||||
1).as_subclass(LabelTensor)
|
pinn = PINN(
|
||||||
xi.labels = ['x']
|
problem=ppoisson_problem,
|
||||||
yi = model.ffn_x(xi)
|
model=model,
|
||||||
y_truth = -torch.sin(xi*torch.pi)
|
optimizer_kwargs={'lr' : 0.006}
|
||||||
|
)
|
||||||
|
|
||||||
|
# create trainer
|
||||||
|
directory = 'pina.parametric_poisson_deeponet'
|
||||||
|
trainer = Trainer(solver=pinn, accelerator='cpu', max_epochs=args.epochs, default_root_dir=directory)
|
||||||
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
plt.plot(xi.detach().flatten(), yi.detach().flatten(), 'r-')
|
|
||||||
plt.plot(xi.detach().flatten(), y_truth.detach().flatten(), 'b-')
|
|
||||||
plt.plot(xi.detach().flatten(), -y_truth.detach().flatten(), 'b-')
|
|
||||||
plt.show()
|
|
||||||
pinn.save_state(f"pina.poisson_{args.id_run}")
|
|
||||||
|
|
||||||
if args.load:
|
if args.load:
|
||||||
pinn.load_state(f"pina.poisson_{args.id_run}")
|
pinn = PINN.load_from_checkpoint(checkpoint_path=args.load, problem=ppoisson_problem, model=model)
|
||||||
plotter = Plotter()
|
plotter = Plotter()
|
||||||
plotter.plot(pinn)
|
plotter.plot(pinn, fixed_variables={'mu1': 1, 'mu2': -1})
|
||||||
|
else:
|
||||||
|
trainer.train()
|
||||||
|
|||||||
@@ -1,55 +1,52 @@
|
|||||||
import argparse
|
import argparse
|
||||||
import numpy as np
|
from torch.nn import Softplus
|
||||||
import torch
|
|
||||||
from torch.nn import ReLU, Tanh, Softplus
|
|
||||||
|
|
||||||
from pina import PINN, Plotter
|
from pina import Plotter, Trainer
|
||||||
from pina.model import FeedForward
|
from pina.model import FeedForward
|
||||||
from pina.adaptive_functions import AdaptiveSin, AdaptiveCos, AdaptiveTanh
|
from pina.solvers import PINN
|
||||||
from problems.stokes import Stokes
|
from problems.stokes import Stokes
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
|
||||||
parser = argparse.ArgumentParser(description="Run PINA")
|
parser = argparse.ArgumentParser(description="Run PINA")
|
||||||
group = parser.add_mutually_exclusive_group(required=True)
|
parser = argparse.ArgumentParser(description="Run PINA")
|
||||||
group.add_argument("-s", "-save", action="store_true")
|
parser.add_argument("--load", help="directory to save or load file", type=str)
|
||||||
group.add_argument("-l", "-load", action="store_true")
|
parser.add_argument("--epochs", help="extra features", type=int, default=1000)
|
||||||
parser.add_argument("id_run", help="number of run", type=int)
|
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
# create problem and discretise domain
|
||||||
stokes_problem = Stokes()
|
stokes_problem = Stokes()
|
||||||
|
stokes_problem.discretise_domain(n=1000, locations=['gamma_top', 'gamma_bot', 'gamma_in', 'gamma_out'])
|
||||||
|
stokes_problem.discretise_domain(n=2000, locations=['D'])
|
||||||
|
|
||||||
|
# make the model
|
||||||
model = FeedForward(
|
model = FeedForward(
|
||||||
layers=[10, 10, 10, 10],
|
layers=[10, 10, 10, 10],
|
||||||
output_variables=stokes_problem.output_variables,
|
output_dimensions=len(stokes_problem.output_variables),
|
||||||
input_variables=stokes_problem.input_variables,
|
input_dimensions=len(stokes_problem.input_variables),
|
||||||
func=Softplus,
|
func=Softplus,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
# make the pinn
|
||||||
pinn = PINN(
|
pinn = PINN(
|
||||||
stokes_problem,
|
stokes_problem,
|
||||||
model,
|
model,
|
||||||
lr=0.006,
|
optimizer_kwargs={'lr' : 0.001}
|
||||||
error_norm='mse',
|
)
|
||||||
regularizer=1e-8)
|
|
||||||
|
|
||||||
if args.s:
|
# create trainer
|
||||||
|
directory = 'pina.navier_stokes'
|
||||||
|
trainer = Trainer(solver=pinn, accelerator='cpu', max_epochs=args.epochs, default_root_dir=directory)
|
||||||
|
|
||||||
pinn.span_pts(200, 'grid', locations=['gamma_top', 'gamma_bot', 'gamma_in', 'gamma_out'])
|
|
||||||
# pinn.span_pts(2000, 'random', locations=['D'])
|
|
||||||
pinn.span_pts(2000, 'random', locations=['D1'])
|
|
||||||
pinn.span_pts(2000, 'random', locations=['D2'])
|
|
||||||
pinn.train(10000, 100)
|
|
||||||
with open('stokes_history_{}.txt'.format(args.id_run), 'w') as file_:
|
|
||||||
for i, losses in pinn.history_loss.items():
|
|
||||||
file_.write('{} {}\n'.format(i, sum(losses)))
|
|
||||||
pinn.save_state('pina.stokes')
|
|
||||||
|
|
||||||
else:
|
if args.load:
|
||||||
pinn.load_state('pina.stokes')
|
pinn = PINN.load_from_checkpoint(checkpoint_path=args.load, problem=stokes_problem, model=model)
|
||||||
plotter = Plotter()
|
plotter = Plotter()
|
||||||
plotter.plot(pinn, components='ux')
|
plotter.plot(pinn, components='ux')
|
||||||
plotter.plot(pinn, components='uy')
|
plotter.plot(pinn, components='uy')
|
||||||
plotter.plot(pinn, components='p')
|
plotter.plot(pinn, components='p')
|
||||||
|
else:
|
||||||
|
trainer.train()
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
64
examples/run_wave.py
Normal file
64
examples/run_wave.py
Normal file
@@ -0,0 +1,64 @@
|
|||||||
|
""" Run PINA on Burgers equation. """
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import torch
|
||||||
|
from torch.nn import Softplus
|
||||||
|
|
||||||
|
from pina import LabelTensor
|
||||||
|
from pina.model import FeedForward
|
||||||
|
from pina.solvers import PINN
|
||||||
|
from pina.plotter import Plotter
|
||||||
|
from pina.trainer import Trainer
|
||||||
|
from problems.wave import Wave
|
||||||
|
|
||||||
|
class HardMLP(torch.nn.Module):
|
||||||
|
|
||||||
|
def __init__(self, **kwargs):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.layers = FeedForward(**kwargs)
|
||||||
|
|
||||||
|
# here in the foward we implement the hard constraints
|
||||||
|
def forward(self, x):
|
||||||
|
hard_space = x.extract(['x'])*(1-x.extract(['x']))*x.extract(['y'])*(1-x.extract(['y']))
|
||||||
|
hard_t = torch.sin(torch.pi*x.extract(['x'])) * torch.sin(torch.pi*x.extract(['y'])) * torch.cos(torch.sqrt(torch.tensor(2.))*torch.pi*x.extract(['t']))
|
||||||
|
return hard_space * self.layers(x) * x.extract(['t']) + hard_t
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser(description="Run PINA")
|
||||||
|
parser.add_argument("--load", help="directory to save or load file", type=str)
|
||||||
|
parser.add_argument("--epochs", help="extra features", type=int, default=1000)
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
# create problem and discretise domain
|
||||||
|
wave_problem = Wave()
|
||||||
|
wave_problem.discretise_domain(1000, 'random', locations=['D', 't0', 'gamma1', 'gamma2', 'gamma3', 'gamma4'])
|
||||||
|
|
||||||
|
# create model
|
||||||
|
model = HardMLP(
|
||||||
|
layers=[40, 40, 40],
|
||||||
|
output_dimensions=len(wave_problem.output_variables),
|
||||||
|
input_dimensions=len(wave_problem.input_variables),
|
||||||
|
func=Softplus
|
||||||
|
)
|
||||||
|
|
||||||
|
# create solver
|
||||||
|
pinn = PINN(
|
||||||
|
problem=wave_problem,
|
||||||
|
model=model,
|
||||||
|
optimizer_kwargs={'lr' : 0.006}
|
||||||
|
)
|
||||||
|
|
||||||
|
# create trainer
|
||||||
|
directory = 'pina.wave'
|
||||||
|
trainer = Trainer(solver=pinn, accelerator='cpu', max_epochs=args.epochs, default_root_dir=directory)
|
||||||
|
|
||||||
|
|
||||||
|
if args.load:
|
||||||
|
pinn = PINN.load_from_checkpoint(checkpoint_path=args.load, problem=wave_problem, model=model)
|
||||||
|
plotter = Plotter()
|
||||||
|
plotter.plot(pinn)
|
||||||
|
else:
|
||||||
|
trainer.train()
|
||||||
@@ -69,7 +69,7 @@ class SolverInterface(pytorch_lightning.LightningModule, metaclass=ABCMeta):
|
|||||||
f' {len_optimizer_kwargs} dicitionaries')
|
f' {len_optimizer_kwargs} dicitionaries')
|
||||||
|
|
||||||
# extra features handling
|
# extra features handling
|
||||||
if extra_features is None or (len(extra_features)==0):
|
if (extra_features is None) or (len(extra_features)==0):
|
||||||
extra_features = [None] * len_model
|
extra_features = [None] * len_model
|
||||||
else:
|
else:
|
||||||
# if we only have a list of extra features
|
# if we only have a list of extra features
|
||||||
|
|||||||
Reference in New Issue
Block a user