Backpropagation and fix test for OrthogonalBlock

Co-authored-by: Dario Coscia <dariocos99@gmail.com>
    Co-authored-by: Gabriele Codega <gcodega@pascal.maths.sissa.it>
This commit is contained in:
Dario Coscia
2024-09-03 16:23:14 +02:00
committed by Nicola Demo
parent 59fc19798f
commit eea0cc0833
3 changed files with 125 additions and 25 deletions

View File

@@ -9,6 +9,7 @@ __all__ = [
"FourierBlock2D",
"FourierBlock3D",
"PODBlock",
"OrthogonalBlock",
"PeriodicBoundaryEmbedding",
"FourierFeatureEmbedding",
"AVNOBlock",
@@ -25,6 +26,7 @@ from .spectral import (
)
from .fourier import FourierBlock1D, FourierBlock2D, FourierBlock3D
from .pod import PODBlock
from .orthogonal import OrthogonalBlock
from .embedding import PeriodicBoundaryEmbedding, FourierFeatureEmbedding
from .avno_layer import AVNOBlock
from .lowrank_layer import LowRankBlock

View File

@@ -1,23 +1,33 @@
"""Module for OrthogonalBlock layer, to make the input orthonormal."""
"""Module for OrthogonalBlock."""
import torch
from ...utils import check_consistency
class OrthogonalBlock(torch.nn.Module):
"""
Module to make the input orthonormal.
The module takes a tensor of size [N, M] and returns a tensor of
size [N, M] where the columns are orthonormal.
The module takes a tensor of size :math:`[N, M]` and returns a tensor of
size :math:`[N, M]` where the columns are orthonormal. The block performs a
Gram Schmidt orthogonalization process for the input, see
`here <https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process>` for
details.
"""
def __init__(self, dim=-1):
def __init__(self, dim=-1, requires_grad=True):
"""
Initialize the OrthogonalBlock module.
:param int dim: The dimension where to orthogonalize.
:param bool requires_grad: If autograd should record operations on
the returned tensor, defaults to True.
"""
super().__init__()
# store dim
self.dim = dim
# store requires_grad
check_consistency(requires_grad, bool)
self._requires_grad = requires_grad
def forward(self, X):
"""
@@ -26,7 +36,8 @@ class OrthogonalBlock(torch.nn.Module):
:raises Warning: If the dimension is greater than the other dimensions.
:param torch.Tensor X: The input tensor to orthogonalize.
:param torch.Tensor X: The input tensor to orthogonalize. The input must
be of dimensions :math:`[N, M]`.
:return: The orthonormal tensor.
"""
# check dim is less than all the other dimensions
@@ -36,23 +47,75 @@ class OrthogonalBlock(torch.nn.Module):
" than the other dimensions"
)
result = torch.zeros_like(X)
# normalize first basis
X_0 = torch.select(X, self.dim, 0)
result_0 = torch.select(result, self.dim, 0)
result_0 += X_0 / torch.norm(X_0)
result = torch.zeros_like(X, requires_grad=self._requires_grad)
X_0 = torch.select(X, self.dim, 0).clone()
result_0 = X_0/torch.linalg.norm(X_0)
result = self._differentiable_copy(result, 0, result_0)
# iterate over the rest of the basis with Gram-Schmidt
for i in range(1, X.shape[self.dim]):
v = torch.select(X, self.dim, i)
v = torch.select(X, self.dim, i).clone()
for j in range(i):
v -= torch.sum(
v * torch.select(result, self.dim, j),
dim=self.dim,
keepdim=True,
) * torch.select(result, self.dim, j)
result_i = torch.select(result, self.dim, i)
result_i += v / torch.norm(v)
vj = torch.select(result,self.dim,j).clone()
v = v - torch.sum(v * vj,
dim=self.dim, keepdim=True) * vj
#result_i = torch.select(result, self.dim, i)
result_i = v/torch.linalg.norm(v)
result = self._differentiable_copy(result, i, result_i)
return result
def _differentiable_copy(self, result, idx, value):
"""
Perform a differentiable copy operation on a tensor.
:param torch.Tensor result: The tensor where values will be copied to.
:param int idx: The index along the specified dimension where the
value will be copied.
:param torch.Tensor value: The tensor value to copy into the
result tensor.
:return: A new tensor with the copied values.
:rtype: torch.Tensor
"""
return result.index_copy(
self.dim, torch.tensor([idx]), value.unsqueeze(self.dim)
)
@property
def dim(self):
"""
Get the dimension along which operations are performed.
:return: The current dimension value.
:rtype: int
"""
return self._dim
@dim.setter
def dim(self, value):
"""
Set the dimension along which operations are performed.
:param value: The dimension to be set, which must be 0, 1, or -1.
:type value: int
:raises IndexError: If the provided dimension is not in the
range [-1, 1].
"""
# check consistency
check_consistency(value, int)
if value not in [0, 1, -1]:
raise IndexError('Dimension out of range (expected to be in '
f'range of [-1, 1], but got {value})')
# assign value
self._dim = value
@property
def requires_grad(self):
"""
Indicates whether gradient computation is required for operations
on the tensors.
:return: True if gradients are required, False otherwise.
:rtype: bool
"""
return self._requires_grad