Backpropagation and fix test for OrthogonalBlock
Co-authored-by: Dario Coscia <dariocos99@gmail.com> Co-authored-by: Gabriele Codega <gcodega@pascal.maths.sissa.it>
This commit is contained in:
committed by
Nicola Demo
parent
59fc19798f
commit
eea0cc0833
@@ -9,6 +9,7 @@ __all__ = [
|
||||
"FourierBlock2D",
|
||||
"FourierBlock3D",
|
||||
"PODBlock",
|
||||
"OrthogonalBlock",
|
||||
"PeriodicBoundaryEmbedding",
|
||||
"FourierFeatureEmbedding",
|
||||
"AVNOBlock",
|
||||
@@ -25,6 +26,7 @@ from .spectral import (
|
||||
)
|
||||
from .fourier import FourierBlock1D, FourierBlock2D, FourierBlock3D
|
||||
from .pod import PODBlock
|
||||
from .orthogonal import OrthogonalBlock
|
||||
from .embedding import PeriodicBoundaryEmbedding, FourierFeatureEmbedding
|
||||
from .avno_layer import AVNOBlock
|
||||
from .lowrank_layer import LowRankBlock
|
||||
|
||||
@@ -1,23 +1,33 @@
|
||||
"""Module for OrthogonalBlock layer, to make the input orthonormal."""
|
||||
"""Module for OrthogonalBlock."""
|
||||
|
||||
import torch
|
||||
from ...utils import check_consistency
|
||||
|
||||
|
||||
class OrthogonalBlock(torch.nn.Module):
|
||||
"""
|
||||
Module to make the input orthonormal.
|
||||
The module takes a tensor of size [N, M] and returns a tensor of
|
||||
size [N, M] where the columns are orthonormal.
|
||||
The module takes a tensor of size :math:`[N, M]` and returns a tensor of
|
||||
size :math:`[N, M]` where the columns are orthonormal. The block performs a
|
||||
Gram Schmidt orthogonalization process for the input, see
|
||||
`here <https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process>` for
|
||||
details.
|
||||
"""
|
||||
|
||||
def __init__(self, dim=-1):
|
||||
def __init__(self, dim=-1, requires_grad=True):
|
||||
"""
|
||||
Initialize the OrthogonalBlock module.
|
||||
|
||||
:param int dim: The dimension where to orthogonalize.
|
||||
:param bool requires_grad: If autograd should record operations on
|
||||
the returned tensor, defaults to True.
|
||||
"""
|
||||
super().__init__()
|
||||
# store dim
|
||||
self.dim = dim
|
||||
# store requires_grad
|
||||
check_consistency(requires_grad, bool)
|
||||
self._requires_grad = requires_grad
|
||||
|
||||
def forward(self, X):
|
||||
"""
|
||||
@@ -26,7 +36,8 @@ class OrthogonalBlock(torch.nn.Module):
|
||||
|
||||
:raises Warning: If the dimension is greater than the other dimensions.
|
||||
|
||||
:param torch.Tensor X: The input tensor to orthogonalize.
|
||||
:param torch.Tensor X: The input tensor to orthogonalize. The input must
|
||||
be of dimensions :math:`[N, M]`.
|
||||
:return: The orthonormal tensor.
|
||||
"""
|
||||
# check dim is less than all the other dimensions
|
||||
@@ -36,23 +47,75 @@ class OrthogonalBlock(torch.nn.Module):
|
||||
" than the other dimensions"
|
||||
)
|
||||
|
||||
result = torch.zeros_like(X)
|
||||
|
||||
# normalize first basis
|
||||
X_0 = torch.select(X, self.dim, 0)
|
||||
result_0 = torch.select(result, self.dim, 0)
|
||||
result_0 += X_0 / torch.norm(X_0)
|
||||
result = torch.zeros_like(X, requires_grad=self._requires_grad)
|
||||
X_0 = torch.select(X, self.dim, 0).clone()
|
||||
result_0 = X_0/torch.linalg.norm(X_0)
|
||||
result = self._differentiable_copy(result, 0, result_0)
|
||||
|
||||
# iterate over the rest of the basis with Gram-Schmidt
|
||||
for i in range(1, X.shape[self.dim]):
|
||||
v = torch.select(X, self.dim, i)
|
||||
v = torch.select(X, self.dim, i).clone()
|
||||
for j in range(i):
|
||||
v -= torch.sum(
|
||||
v * torch.select(result, self.dim, j),
|
||||
dim=self.dim,
|
||||
keepdim=True,
|
||||
) * torch.select(result, self.dim, j)
|
||||
result_i = torch.select(result, self.dim, i)
|
||||
result_i += v / torch.norm(v)
|
||||
|
||||
vj = torch.select(result,self.dim,j).clone()
|
||||
v = v - torch.sum(v * vj,
|
||||
dim=self.dim, keepdim=True) * vj
|
||||
#result_i = torch.select(result, self.dim, i)
|
||||
result_i = v/torch.linalg.norm(v)
|
||||
result = self._differentiable_copy(result, i, result_i)
|
||||
return result
|
||||
|
||||
|
||||
def _differentiable_copy(self, result, idx, value):
|
||||
"""
|
||||
Perform a differentiable copy operation on a tensor.
|
||||
|
||||
:param torch.Tensor result: The tensor where values will be copied to.
|
||||
:param int idx: The index along the specified dimension where the
|
||||
value will be copied.
|
||||
:param torch.Tensor value: The tensor value to copy into the
|
||||
result tensor.
|
||||
:return: A new tensor with the copied values.
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
return result.index_copy(
|
||||
self.dim, torch.tensor([idx]), value.unsqueeze(self.dim)
|
||||
)
|
||||
|
||||
@property
|
||||
def dim(self):
|
||||
"""
|
||||
Get the dimension along which operations are performed.
|
||||
|
||||
:return: The current dimension value.
|
||||
:rtype: int
|
||||
"""
|
||||
return self._dim
|
||||
|
||||
@dim.setter
|
||||
def dim(self, value):
|
||||
"""
|
||||
Set the dimension along which operations are performed.
|
||||
|
||||
:param value: The dimension to be set, which must be 0, 1, or -1.
|
||||
:type value: int
|
||||
:raises IndexError: If the provided dimension is not in the
|
||||
range [-1, 1].
|
||||
"""
|
||||
# check consistency
|
||||
check_consistency(value, int)
|
||||
if value not in [0, 1, -1]:
|
||||
raise IndexError('Dimension out of range (expected to be in '
|
||||
f'range of [-1, 1], but got {value})')
|
||||
# assign value
|
||||
self._dim = value
|
||||
|
||||
@property
|
||||
def requires_grad(self):
|
||||
"""
|
||||
Indicates whether gradient computation is required for operations
|
||||
on the tensors.
|
||||
|
||||
:return: True if gradients are required, False otherwise.
|
||||
:rtype: bool
|
||||
"""
|
||||
return self._requires_grad
|
||||
|
||||
Reference in New Issue
Block a user