add linear weighting

This commit is contained in:
giovanni
2025-09-05 10:12:09 +02:00
committed by Giovanni Canali
parent 96402baf20
commit ef3542486c
7 changed files with 176 additions and 9 deletions

View File

@@ -0,0 +1,95 @@
import math
import pytest
from pina import Trainer
from pina.solver import PINN
from pina.model import FeedForward
from pina.loss import LinearWeighting
from pina.problem.zoo import Poisson2DSquareProblem
# Initialize problem and model
problem = Poisson2DSquareProblem()
problem.discretise_domain(10)
model = FeedForward(len(problem.input_variables), len(problem.output_variables))
# Weights for testing
init_weight_1 = {cond: 3 for cond in problem.conditions.keys()}
init_weight_2 = {cond: 4 for cond in problem.conditions.keys()}
final_weight_1 = {cond: 1 for cond in problem.conditions.keys()}
final_weight_2 = {cond: 5 for cond in problem.conditions.keys()}
@pytest.mark.parametrize("initial_weights", [init_weight_1, init_weight_2])
@pytest.mark.parametrize("final_weights", [final_weight_1, final_weight_2])
@pytest.mark.parametrize("target_epoch", [5, 10])
def test_constructor(initial_weights, final_weights, target_epoch):
LinearWeighting(
initial_weights=initial_weights,
final_weights=final_weights,
target_epoch=target_epoch,
)
# Should fail if initial_weights is not a dictionary
with pytest.raises(ValueError):
LinearWeighting(
initial_weights=[1, 1, 1],
final_weights=final_weights,
target_epoch=target_epoch,
)
# Should fail if final_weights is not a dictionary
with pytest.raises(ValueError):
LinearWeighting(
initial_weights=initial_weights,
final_weights=[1, 1, 1],
target_epoch=target_epoch,
)
# Should fail if target_epoch is not an integer
with pytest.raises(AssertionError):
LinearWeighting(
initial_weights=initial_weights,
final_weights=final_weights,
target_epoch=1.5,
)
# Should fail if target_epoch is not positive
with pytest.raises(AssertionError):
LinearWeighting(
initial_weights=initial_weights,
final_weights=final_weights,
target_epoch=0,
)
# Should fail if dictionary keys do not match
with pytest.raises(ValueError):
LinearWeighting(
initial_weights={list(initial_weights.keys())[0]: 1},
final_weights=final_weights,
target_epoch=target_epoch,
)
@pytest.mark.parametrize("initial_weights", [init_weight_1, init_weight_2])
@pytest.mark.parametrize("final_weights", [final_weight_1, final_weight_2])
@pytest.mark.parametrize("target_epoch", [5, 10])
def test_train_aggregation(initial_weights, final_weights, target_epoch):
weighting = LinearWeighting(
initial_weights=initial_weights,
final_weights=final_weights,
target_epoch=target_epoch,
)
solver = PINN(problem=problem, model=model, weighting=weighting)
trainer = Trainer(solver=solver, max_epochs=target_epoch, accelerator="cpu")
trainer.train()
# Check that weights are updated correctly
assert all(
math.isclose(
weighting.last_saved_weights()[cond],
final_weights[cond],
rel_tol=1e-5,
abs_tol=1e-8,
)
for cond in final_weights.keys()
)