refact
This commit is contained in:
118
pina/graph.py
Normal file
118
pina/graph.py
Normal file
@@ -0,0 +1,118 @@
|
||||
""" Module for Loss class """
|
||||
|
||||
import logging
|
||||
from torch_geometric.nn import MessagePassing, InstanceNorm, radius_graph
|
||||
from torch_geometric.data import Data
|
||||
import torch
|
||||
|
||||
class Graph:
|
||||
"""
|
||||
PINA Graph managing the PyG Data class.
|
||||
"""
|
||||
def __init__(self, data):
|
||||
self.data = data
|
||||
|
||||
@staticmethod
|
||||
def _build_triangulation(**kwargs):
|
||||
logging.debug("Creating graph with triangulation mode.")
|
||||
|
||||
# check for mandatory arguments
|
||||
if "nodes_coordinates" not in kwargs:
|
||||
raise ValueError("Nodes coordinates must be provided in the kwargs.")
|
||||
if "nodes_data" not in kwargs:
|
||||
raise ValueError("Nodes data must be provided in the kwargs.")
|
||||
if "triangles" not in kwargs:
|
||||
raise ValueError("Triangles must be provided in the kwargs.")
|
||||
|
||||
nodes_coordinates = kwargs["nodes_coordinates"]
|
||||
nodes_data = kwargs["nodes_data"]
|
||||
triangles = kwargs["triangles"]
|
||||
|
||||
|
||||
|
||||
def less_first(a, b):
|
||||
return [a, b] if a < b else [b, a]
|
||||
|
||||
list_of_edges = []
|
||||
|
||||
for triangle in triangles:
|
||||
for e1, e2 in [[0, 1], [1, 2], [2, 0]]:
|
||||
list_of_edges.append(less_first(triangle[e1],triangle[e2]))
|
||||
|
||||
array_of_edges = torch.unique(torch.Tensor(list_of_edges), dim=0) # remove duplicates
|
||||
array_of_edges = array_of_edges.t().contiguous()
|
||||
print(array_of_edges)
|
||||
|
||||
# list_of_lengths = []
|
||||
|
||||
# for p1,p2 in array_of_edges:
|
||||
# x1, y1 = tri.points[p1]
|
||||
# x2, y2 = tri.points[p2]
|
||||
# list_of_lengths.append((x1-x2)**2 + (y1-y2)**2)
|
||||
|
||||
# array_of_lengths = np.sqrt(np.array(list_of_lengths))
|
||||
|
||||
# return array_of_edges, array_of_lengths
|
||||
|
||||
return Data(
|
||||
x=nodes_data,
|
||||
pos=nodes_coordinates.T,
|
||||
|
||||
edge_index=array_of_edges,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _build_radius(**kwargs):
|
||||
logging.debug("Creating graph with radius mode.")
|
||||
|
||||
# check for mandatory arguments
|
||||
if "nodes_coordinates" not in kwargs:
|
||||
raise ValueError("Nodes coordinates must be provided in the kwargs.")
|
||||
if "nodes_data" not in kwargs:
|
||||
raise ValueError("Nodes data must be provided in the kwargs.")
|
||||
if "radius" not in kwargs:
|
||||
raise ValueError("Radius must be provided in the kwargs.")
|
||||
|
||||
nodes_coordinates = kwargs["nodes_coordinates"]
|
||||
nodes_data = kwargs["nodes_data"]
|
||||
radius = kwargs["radius"]
|
||||
|
||||
edges_data = kwargs.get("edge_data", None)
|
||||
loop = kwargs.get("loop", False)
|
||||
batch = kwargs.get("batch", None)
|
||||
|
||||
logging.debug(f"radius: {radius}, loop: {loop}, "
|
||||
f"batch: {batch}")
|
||||
|
||||
edge_index = radius_graph(
|
||||
x=nodes_coordinates.tensor,
|
||||
r=radius,
|
||||
loop=loop,
|
||||
batch=batch,
|
||||
)
|
||||
|
||||
logging.debug(f"edge_index computed")
|
||||
return Data(
|
||||
x=nodes_data,
|
||||
pos=nodes_coordinates,
|
||||
edge_index=edge_index,
|
||||
edge_attr=edges_data,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def build(mode, **kwargs):
|
||||
"""
|
||||
Constructor for the `Graph` class.
|
||||
"""
|
||||
if mode == "radius":
|
||||
graph = Graph._build_radius(**kwargs)
|
||||
elif mode == "triangulation":
|
||||
graph = Graph._build_triangulation(**kwargs)
|
||||
else:
|
||||
raise ValueError(f"Mode {mode} not recognized")
|
||||
|
||||
return Graph(graph)
|
||||
|
||||
|
||||
def __repr__(self):
|
||||
return f"Graph(data={self.data})"
|
||||
Reference in New Issue
Block a user