This commit is contained in:
Nicola Demo
2024-09-09 10:50:54 +02:00
parent 9d9c2aa23e
commit f0d68b34c7
23 changed files with 480 additions and 229 deletions

View File

@@ -5,14 +5,17 @@ from pina import Condition, LabelTensor
from pina.solvers import SupervisedSolver
from pina.trainer import Trainer
from pina.model import FeedForward
from pina.loss import LpLoss
from pina.loss.loss_interface import LpLoss
class NeuralOperatorProblem(AbstractProblem):
input_variables = ['u_0', 'u_1']
output_variables = ['u']
domains = {
'pts': LabelTensor(torch.rand(100, 2), labels={1: {'name': 'space', 'dof': ['u_0', 'u_1']}})
'pts': LabelTensor(
torch.rand(100, 2),
labels={1: {'name': 'space', 'dof': ['u_0', 'u_1']}}
)
}
conditions = {
'data' : Condition(
@@ -56,9 +59,51 @@ def test_constructor():
# SupervisedSolver(problem=problem, model=model_extra_feats, extra_features=extra_feats)
class AutoSolver(SupervisedSolver):
def forward(self, input):
from pina.graph import Graph
print(Graph)
print(input)
if not isinstance(input, Graph):
input = Graph.build('radius', nodes_coordinates=input, nodes_data=torch.rand(input.shape), radius=0.2)
print(input)
print(input.data.edge_index)
print(input.data)
g = self.model[0](input.data, edge_index=input.data.edge_index)
g.labels = {1: {'name': 'output', 'dof': ['u']}}
return g
du_dt_new = LabelTensor(self.model[0](graph).reshape(-1,1), labels = ['du'])
return du_dt_new
class GraphModel(torch.nn.Module):
def __init__(self, in_channels, out_channels):
from torch_geometric.nn import GCNConv, NNConv
super().__init__()
self.conv1 = GCNConv(in_channels, 16)
self.conv2 = GCNConv(16, out_channels)
def forward(self, data, edge_index):
print(data)
x = data.x
print(x)
x = self.conv1(x, edge_index)
x = x.relu()
x = self.conv2(x, edge_index)
return x
def test_graph():
solver = AutoSolver(problem = problem, model=GraphModel(2, 1), loss=LpLoss())
trainer = Trainer(solver=solver, max_epochs=30, accelerator='cpu', batch_size=20)
trainer.train()
assert False
def test_train_cpu():
solver = SupervisedSolver(problem = problem, model=model, loss=LpLoss())
trainer = Trainer(solver=solver, max_epochs=3, accelerator='cpu', batch_size=20)
trainer = Trainer(solver=solver, max_epochs=300, accelerator='cpu', batch_size=20)
trainer.train()