fix some tests
This commit is contained in:
5
pina/problem/zoo/__init__.py
Normal file
5
pina/problem/zoo/__init__.py
Normal file
@@ -0,0 +1,5 @@
|
|||||||
|
__all__ = [
|
||||||
|
'Poisson2DSquareProblem'
|
||||||
|
]
|
||||||
|
|
||||||
|
from .poisson_2d_square import Poisson2DSquareProblem
|
||||||
44
pina/problem/zoo/poisson_2d_square.py
Normal file
44
pina/problem/zoo/poisson_2d_square.py
Normal file
@@ -0,0 +1,44 @@
|
|||||||
|
""" Definition of the Poisson problem on a square domain."""
|
||||||
|
|
||||||
|
from pina.problem import SpatialProblem
|
||||||
|
from pina.operators import laplacian
|
||||||
|
from pina import LabelTensor, Condition
|
||||||
|
from pina.domain import CartesianDomain
|
||||||
|
from pina.equation.equation import Equation
|
||||||
|
from pina.equation.equation_factory import FixedValue
|
||||||
|
import torch
|
||||||
|
|
||||||
|
def laplace_equation(input_, output_):
|
||||||
|
force_term = (torch.sin(input_.extract(['x']) * torch.pi) *
|
||||||
|
torch.sin(input_.extract(['y']) * torch.pi))
|
||||||
|
delta_u = laplacian(output_.extract(['u']), input_)
|
||||||
|
return delta_u - force_term
|
||||||
|
|
||||||
|
|
||||||
|
my_laplace = Equation(laplace_equation)
|
||||||
|
|
||||||
|
|
||||||
|
class Poisson2DSquareProblem(SpatialProblem):
|
||||||
|
output_variables = ['u']
|
||||||
|
spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})
|
||||||
|
|
||||||
|
domains = {
|
||||||
|
'D': CartesianDomain({'x': [0, 1], 'y': [0, 1]}),
|
||||||
|
'g1': CartesianDomain({'x': [0, 1], 'y': 1}),
|
||||||
|
'g2': CartesianDomain({'x': [0, 1], 'y': 0}),
|
||||||
|
'g3': CartesianDomain({'x': 1, 'y': [0, 1]}),
|
||||||
|
'g4': CartesianDomain({'x': 0, 'y': [0, 1]}),
|
||||||
|
}
|
||||||
|
|
||||||
|
conditions = {
|
||||||
|
'nil_g1': Condition(domain='D', equation=FixedValue(0.0)),
|
||||||
|
'nil_g2': Condition(domain='D', equation=FixedValue(0.0)),
|
||||||
|
'nil_g3': Condition(domain='D', equation=FixedValue(0.0)),
|
||||||
|
'nil_g4': Condition(domain='D', equation=FixedValue(0.0)),
|
||||||
|
'laplace_D': Condition(domain='D', equation=my_laplace),
|
||||||
|
}
|
||||||
|
|
||||||
|
def poisson_sol(self, pts):
|
||||||
|
return -(torch.sin(pts.extract(['x']) * torch.pi) *
|
||||||
|
torch.sin(pts.extract(['y']) * torch.pi))
|
||||||
|
|
||||||
@@ -1,59 +1,13 @@
|
|||||||
from pina.callbacks import R3Refinement
|
|
||||||
import torch
|
|
||||||
import pytest
|
|
||||||
|
|
||||||
from pina.problem import SpatialProblem
|
|
||||||
from pina.operators import laplacian
|
|
||||||
from pina.domain import CartesianDomain
|
|
||||||
from pina import Condition, LabelTensor
|
|
||||||
from pina.solvers import PINN
|
from pina.solvers import PINN
|
||||||
from pina.trainer import Trainer
|
from pina.trainer import Trainer
|
||||||
from pina.model import FeedForward
|
from pina.model import FeedForward
|
||||||
from pina.equation.equation import Equation
|
from pina.problem.zoo import Poisson2DSquareProblem as Poisson
|
||||||
from pina.equation.equation_factory import FixedValue
|
from pina.callbacks import R3Refinement
|
||||||
|
|
||||||
|
|
||||||
def laplace_equation(input_, output_):
|
|
||||||
force_term = (torch.sin(input_.extract(['x']) * torch.pi) *
|
|
||||||
torch.sin(input_.extract(['y']) * torch.pi))
|
|
||||||
delta_u = laplacian(output_.extract(['u']), input_)
|
|
||||||
return delta_u - force_term
|
|
||||||
|
|
||||||
|
|
||||||
my_laplace = Equation(laplace_equation)
|
|
||||||
in_ = LabelTensor(torch.tensor([[0., 1.]]), ['x', 'y'])
|
|
||||||
out_ = LabelTensor(torch.tensor([[0.]]), ['u'])
|
|
||||||
|
|
||||||
|
|
||||||
class Poisson(SpatialProblem):
|
|
||||||
output_variables = ['u']
|
|
||||||
spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})
|
|
||||||
|
|
||||||
conditions = {
|
|
||||||
'gamma1': Condition(
|
|
||||||
location=CartesianDomain({'x': [0, 1], 'y': 1}),
|
|
||||||
equation=FixedValue(0.0)),
|
|
||||||
'gamma2': Condition(
|
|
||||||
location=CartesianDomain({'x': [0, 1], 'y': 0}),
|
|
||||||
equation=FixedValue(0.0)),
|
|
||||||
'gamma3': Condition(
|
|
||||||
location=CartesianDomain({'x': 1, 'y': [0, 1]}),
|
|
||||||
equation=FixedValue(0.0)),
|
|
||||||
'gamma4': Condition(
|
|
||||||
location=CartesianDomain({'x': 0, 'y': [0, 1]}),
|
|
||||||
equation=FixedValue(0.0)),
|
|
||||||
'D': Condition(
|
|
||||||
input_points=LabelTensor(torch.rand(size=(100, 2)), ['x', 'y']),
|
|
||||||
equation=my_laplace),
|
|
||||||
# 'data': Condition(
|
|
||||||
# input_points=in_,
|
|
||||||
# output_points=out_)
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
# make the problem
|
# make the problem
|
||||||
poisson_problem = Poisson()
|
poisson_problem = Poisson()
|
||||||
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
boundaries = ['nil_g1', 'nil_g2', 'nil_g3', 'nil_g4']
|
||||||
n = 10
|
n = 10
|
||||||
poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
|
poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
|
||||||
model = FeedForward(len(poisson_problem.input_variables),
|
model = FeedForward(len(poisson_problem.input_variables),
|
||||||
|
|||||||
@@ -1,59 +1,13 @@
|
|||||||
import torch
|
|
||||||
import pytest
|
|
||||||
|
|
||||||
from pina.problem import SpatialProblem
|
|
||||||
from pina.operators import laplacian
|
|
||||||
from pina.geometry import CartesianDomain
|
|
||||||
from pina import Condition, LabelTensor
|
|
||||||
from pina.solvers import PINN
|
from pina.solvers import PINN
|
||||||
from pina.trainer import Trainer
|
from pina.trainer import Trainer
|
||||||
from pina.model import FeedForward
|
from pina.model import FeedForward
|
||||||
from pina.equation.equation import Equation
|
|
||||||
from pina.equation.equation_factory import FixedValue
|
|
||||||
from pina.callbacks import MetricTracker
|
from pina.callbacks import MetricTracker
|
||||||
|
from pina.problem.zoo import Poisson2DSquareProblem as Poisson
|
||||||
|
|
||||||
def laplace_equation(input_, output_):
|
|
||||||
force_term = (torch.sin(input_.extract(['x']) * torch.pi) *
|
|
||||||
torch.sin(input_.extract(['y']) * torch.pi))
|
|
||||||
delta_u = laplacian(output_.extract(['u']), input_)
|
|
||||||
return delta_u - force_term
|
|
||||||
|
|
||||||
|
|
||||||
my_laplace = Equation(laplace_equation)
|
|
||||||
in_ = LabelTensor(torch.tensor([[0., 1.]]), ['x', 'y'])
|
|
||||||
out_ = LabelTensor(torch.tensor([[0.]]), ['u'])
|
|
||||||
|
|
||||||
|
|
||||||
class Poisson(SpatialProblem):
|
|
||||||
output_variables = ['u']
|
|
||||||
spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})
|
|
||||||
|
|
||||||
conditions = {
|
|
||||||
'gamma1': Condition(
|
|
||||||
location=CartesianDomain({'x': [0, 1], 'y': 1}),
|
|
||||||
equation=FixedValue(0.0)),
|
|
||||||
'gamma2': Condition(
|
|
||||||
location=CartesianDomain({'x': [0, 1], 'y': 0}),
|
|
||||||
equation=FixedValue(0.0)),
|
|
||||||
'gamma3': Condition(
|
|
||||||
location=CartesianDomain({'x': 1, 'y': [0, 1]}),
|
|
||||||
equation=FixedValue(0.0)),
|
|
||||||
'gamma4': Condition(
|
|
||||||
location=CartesianDomain({'x': 0, 'y': [0, 1]}),
|
|
||||||
equation=FixedValue(0.0)),
|
|
||||||
'D': Condition(
|
|
||||||
input_points=LabelTensor(torch.rand(size=(100, 2)), ['x', 'y']),
|
|
||||||
equation=my_laplace),
|
|
||||||
'data': Condition(
|
|
||||||
input_points=in_,
|
|
||||||
output_points=out_)
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
# make the problem
|
# make the problem
|
||||||
poisson_problem = Poisson()
|
poisson_problem = Poisson()
|
||||||
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
boundaries = ['nil_g1', 'nil_g2', 'nil_g3', 'nil_g4']
|
||||||
n = 10
|
n = 10
|
||||||
poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
|
poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
|
||||||
model = FeedForward(len(poisson_problem.input_variables),
|
model = FeedForward(len(poisson_problem.input_variables),
|
||||||
|
|||||||
@@ -2,58 +2,14 @@ from pina.callbacks import SwitchOptimizer
|
|||||||
import torch
|
import torch
|
||||||
import pytest
|
import pytest
|
||||||
|
|
||||||
from pina.problem import SpatialProblem
|
|
||||||
from pina.operators import laplacian
|
|
||||||
from pina.domain import CartesianDomain
|
|
||||||
from pina import Condition, LabelTensor
|
|
||||||
from pina.solvers import PINN
|
from pina.solvers import PINN
|
||||||
from pina.trainer import Trainer
|
from pina.trainer import Trainer
|
||||||
from pina.model import FeedForward
|
from pina.model import FeedForward
|
||||||
from pina.equation.equation import Equation
|
from pina.problem.zoo import Poisson2DSquareProblem as Poisson
|
||||||
from pina.equation.equation_factory import FixedValue
|
|
||||||
|
|
||||||
|
|
||||||
def laplace_equation(input_, output_):
|
|
||||||
force_term = (torch.sin(input_.extract(['x']) * torch.pi) *
|
|
||||||
torch.sin(input_.extract(['y']) * torch.pi))
|
|
||||||
delta_u = laplacian(output_.extract(['u']), input_)
|
|
||||||
return delta_u - force_term
|
|
||||||
|
|
||||||
|
|
||||||
my_laplace = Equation(laplace_equation)
|
|
||||||
in_ = LabelTensor(torch.tensor([[0., 1.]]), ['x', 'y'])
|
|
||||||
out_ = LabelTensor(torch.tensor([[0.]]), ['u'])
|
|
||||||
|
|
||||||
|
|
||||||
class Poisson(SpatialProblem):
|
|
||||||
output_variables = ['u']
|
|
||||||
spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})
|
|
||||||
|
|
||||||
conditions = {
|
|
||||||
'gamma1': Condition(
|
|
||||||
location=CartesianDomain({'x': [0, 1], 'y': 1}),
|
|
||||||
equation=FixedValue(0.0)),
|
|
||||||
'gamma2': Condition(
|
|
||||||
location=CartesianDomain({'x': [0, 1], 'y': 0}),
|
|
||||||
equation=FixedValue(0.0)),
|
|
||||||
'gamma3': Condition(
|
|
||||||
location=CartesianDomain({'x': 1, 'y': [0, 1]}),
|
|
||||||
equation=FixedValue(0.0)),
|
|
||||||
'gamma4': Condition(
|
|
||||||
location=CartesianDomain({'x': 0, 'y': [0, 1]}),
|
|
||||||
equation=FixedValue(0.0)),
|
|
||||||
'D': Condition(
|
|
||||||
input_points=LabelTensor(torch.rand(size=(100, 2)), ['x', 'y']),
|
|
||||||
equation=my_laplace),
|
|
||||||
# 'data': Condition(
|
|
||||||
# input_points=in_,
|
|
||||||
# output_points=out_)
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
# make the problem
|
# make the problem
|
||||||
poisson_problem = Poisson()
|
poisson_problem = Poisson()
|
||||||
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
boundaries = ['nil_g1', 'nil_g2', 'nil_g3', 'nil_g4']
|
||||||
n = 10
|
n = 10
|
||||||
poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
|
poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
|
||||||
model = FeedForward(len(poisson_problem.input_variables),
|
model = FeedForward(len(poisson_problem.input_variables),
|
||||||
|
|||||||
@@ -1,59 +1,13 @@
|
|||||||
import torch
|
|
||||||
import pytest
|
|
||||||
|
|
||||||
from pina.problem import SpatialProblem
|
|
||||||
from pina.operators import laplacian
|
|
||||||
from pina.geometry import CartesianDomain
|
|
||||||
from pina import Condition, LabelTensor
|
|
||||||
from pina.solvers import PINN
|
from pina.solvers import PINN
|
||||||
from pina.trainer import Trainer
|
from pina.trainer import Trainer
|
||||||
from pina.model import FeedForward
|
from pina.model import FeedForward
|
||||||
from pina.equation.equation import Equation
|
|
||||||
from pina.equation.equation_factory import FixedValue
|
|
||||||
from pina.callbacks.processing_callbacks import PINAProgressBar
|
from pina.callbacks.processing_callbacks import PINAProgressBar
|
||||||
|
from pina.problem.zoo import Poisson2DSquareProblem as Poisson
|
||||||
|
|
||||||
def laplace_equation(input_, output_):
|
|
||||||
force_term = (torch.sin(input_.extract(['x']) * torch.pi) *
|
|
||||||
torch.sin(input_.extract(['y']) * torch.pi))
|
|
||||||
delta_u = laplacian(output_.extract(['u']), input_)
|
|
||||||
return delta_u - force_term
|
|
||||||
|
|
||||||
|
|
||||||
my_laplace = Equation(laplace_equation)
|
|
||||||
in_ = LabelTensor(torch.tensor([[0., 1.]]), ['x', 'y'])
|
|
||||||
out_ = LabelTensor(torch.tensor([[0.]]), ['u'])
|
|
||||||
|
|
||||||
|
|
||||||
class Poisson(SpatialProblem):
|
|
||||||
output_variables = ['u']
|
|
||||||
spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})
|
|
||||||
|
|
||||||
conditions = {
|
|
||||||
'gamma1': Condition(
|
|
||||||
location=CartesianDomain({'x': [0, 1], 'y': 1}),
|
|
||||||
equation=FixedValue(0.0)),
|
|
||||||
'gamma2': Condition(
|
|
||||||
location=CartesianDomain({'x': [0, 1], 'y': 0}),
|
|
||||||
equation=FixedValue(0.0)),
|
|
||||||
'gamma3': Condition(
|
|
||||||
location=CartesianDomain({'x': 1, 'y': [0, 1]}),
|
|
||||||
equation=FixedValue(0.0)),
|
|
||||||
'gamma4': Condition(
|
|
||||||
location=CartesianDomain({'x': 0, 'y': [0, 1]}),
|
|
||||||
equation=FixedValue(0.0)),
|
|
||||||
'D': Condition(
|
|
||||||
input_points=LabelTensor(torch.rand(size=(100, 2)), ['x', 'y']),
|
|
||||||
equation=my_laplace),
|
|
||||||
'data': Condition(
|
|
||||||
input_points=in_,
|
|
||||||
output_points=out_)
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
# make the problem
|
# make the problem
|
||||||
poisson_problem = Poisson()
|
poisson_problem = Poisson()
|
||||||
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
boundaries = ['nil_g1', 'nil_g2', 'nil_g3', 'nil_g4']
|
||||||
n = 10
|
n = 10
|
||||||
poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
|
poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
|
||||||
model = FeedForward(len(poisson_problem.input_variables),
|
model = FeedForward(len(poisson_problem.input_variables),
|
||||||
|
|||||||
7
tests/test_problem_zoo/test_poisson_2d_square.py
Normal file
7
tests/test_problem_zoo/test_poisson_2d_square.py
Normal file
@@ -0,0 +1,7 @@
|
|||||||
|
import torch
|
||||||
|
import pytest
|
||||||
|
|
||||||
|
from pina.problem.zoo import Poisson2DSquareProblem
|
||||||
|
|
||||||
|
def test_constructor():
|
||||||
|
Poisson2DSquareProblem()
|
||||||
Reference in New Issue
Block a user