fix some tests

This commit is contained in:
Nicola Demo
2025-01-16 19:03:18 +01:00
parent 03b16b556b
commit f2340cd4ee
8 changed files with 66 additions and 192 deletions

View File

@@ -0,0 +1,5 @@
__all__ = [
'Poisson2DSquareProblem'
]
from .poisson_2d_square import Poisson2DSquareProblem

View File

@@ -0,0 +1,44 @@
""" Definition of the Poisson problem on a square domain."""
from pina.problem import SpatialProblem
from pina.operators import laplacian
from pina import LabelTensor, Condition
from pina.domain import CartesianDomain
from pina.equation.equation import Equation
from pina.equation.equation_factory import FixedValue
import torch
def laplace_equation(input_, output_):
force_term = (torch.sin(input_.extract(['x']) * torch.pi) *
torch.sin(input_.extract(['y']) * torch.pi))
delta_u = laplacian(output_.extract(['u']), input_)
return delta_u - force_term
my_laplace = Equation(laplace_equation)
class Poisson2DSquareProblem(SpatialProblem):
output_variables = ['u']
spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})
domains = {
'D': CartesianDomain({'x': [0, 1], 'y': [0, 1]}),
'g1': CartesianDomain({'x': [0, 1], 'y': 1}),
'g2': CartesianDomain({'x': [0, 1], 'y': 0}),
'g3': CartesianDomain({'x': 1, 'y': [0, 1]}),
'g4': CartesianDomain({'x': 0, 'y': [0, 1]}),
}
conditions = {
'nil_g1': Condition(domain='D', equation=FixedValue(0.0)),
'nil_g2': Condition(domain='D', equation=FixedValue(0.0)),
'nil_g3': Condition(domain='D', equation=FixedValue(0.0)),
'nil_g4': Condition(domain='D', equation=FixedValue(0.0)),
'laplace_D': Condition(domain='D', equation=my_laplace),
}
def poisson_sol(self, pts):
return -(torch.sin(pts.extract(['x']) * torch.pi) *
torch.sin(pts.extract(['y']) * torch.pi))

View File

@@ -1,59 +1,13 @@
from pina.callbacks import R3Refinement
import torch
import pytest
from pina.problem import SpatialProblem
from pina.operators import laplacian
from pina.domain import CartesianDomain
from pina import Condition, LabelTensor
from pina.solvers import PINN
from pina.trainer import Trainer
from pina.model import FeedForward
from pina.equation.equation import Equation
from pina.equation.equation_factory import FixedValue
def laplace_equation(input_, output_):
force_term = (torch.sin(input_.extract(['x']) * torch.pi) *
torch.sin(input_.extract(['y']) * torch.pi))
delta_u = laplacian(output_.extract(['u']), input_)
return delta_u - force_term
my_laplace = Equation(laplace_equation)
in_ = LabelTensor(torch.tensor([[0., 1.]]), ['x', 'y'])
out_ = LabelTensor(torch.tensor([[0.]]), ['u'])
class Poisson(SpatialProblem):
output_variables = ['u']
spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})
conditions = {
'gamma1': Condition(
location=CartesianDomain({'x': [0, 1], 'y': 1}),
equation=FixedValue(0.0)),
'gamma2': Condition(
location=CartesianDomain({'x': [0, 1], 'y': 0}),
equation=FixedValue(0.0)),
'gamma3': Condition(
location=CartesianDomain({'x': 1, 'y': [0, 1]}),
equation=FixedValue(0.0)),
'gamma4': Condition(
location=CartesianDomain({'x': 0, 'y': [0, 1]}),
equation=FixedValue(0.0)),
'D': Condition(
input_points=LabelTensor(torch.rand(size=(100, 2)), ['x', 'y']),
equation=my_laplace),
# 'data': Condition(
# input_points=in_,
# output_points=out_)
}
from pina.problem.zoo import Poisson2DSquareProblem as Poisson
from pina.callbacks import R3Refinement
# make the problem
poisson_problem = Poisson()
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
boundaries = ['nil_g1', 'nil_g2', 'nil_g3', 'nil_g4']
n = 10
poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
model = FeedForward(len(poisson_problem.input_variables),

View File

@@ -1,59 +1,13 @@
import torch
import pytest
from pina.problem import SpatialProblem
from pina.operators import laplacian
from pina.geometry import CartesianDomain
from pina import Condition, LabelTensor
from pina.solvers import PINN
from pina.trainer import Trainer
from pina.model import FeedForward
from pina.equation.equation import Equation
from pina.equation.equation_factory import FixedValue
from pina.callbacks import MetricTracker
def laplace_equation(input_, output_):
force_term = (torch.sin(input_.extract(['x']) * torch.pi) *
torch.sin(input_.extract(['y']) * torch.pi))
delta_u = laplacian(output_.extract(['u']), input_)
return delta_u - force_term
my_laplace = Equation(laplace_equation)
in_ = LabelTensor(torch.tensor([[0., 1.]]), ['x', 'y'])
out_ = LabelTensor(torch.tensor([[0.]]), ['u'])
class Poisson(SpatialProblem):
output_variables = ['u']
spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})
conditions = {
'gamma1': Condition(
location=CartesianDomain({'x': [0, 1], 'y': 1}),
equation=FixedValue(0.0)),
'gamma2': Condition(
location=CartesianDomain({'x': [0, 1], 'y': 0}),
equation=FixedValue(0.0)),
'gamma3': Condition(
location=CartesianDomain({'x': 1, 'y': [0, 1]}),
equation=FixedValue(0.0)),
'gamma4': Condition(
location=CartesianDomain({'x': 0, 'y': [0, 1]}),
equation=FixedValue(0.0)),
'D': Condition(
input_points=LabelTensor(torch.rand(size=(100, 2)), ['x', 'y']),
equation=my_laplace),
'data': Condition(
input_points=in_,
output_points=out_)
}
from pina.problem.zoo import Poisson2DSquareProblem as Poisson
# make the problem
poisson_problem = Poisson()
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
boundaries = ['nil_g1', 'nil_g2', 'nil_g3', 'nil_g4']
n = 10
poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
model = FeedForward(len(poisson_problem.input_variables),

View File

@@ -2,58 +2,14 @@ from pina.callbacks import SwitchOptimizer
import torch
import pytest
from pina.problem import SpatialProblem
from pina.operators import laplacian
from pina.domain import CartesianDomain
from pina import Condition, LabelTensor
from pina.solvers import PINN
from pina.trainer import Trainer
from pina.model import FeedForward
from pina.equation.equation import Equation
from pina.equation.equation_factory import FixedValue
def laplace_equation(input_, output_):
force_term = (torch.sin(input_.extract(['x']) * torch.pi) *
torch.sin(input_.extract(['y']) * torch.pi))
delta_u = laplacian(output_.extract(['u']), input_)
return delta_u - force_term
my_laplace = Equation(laplace_equation)
in_ = LabelTensor(torch.tensor([[0., 1.]]), ['x', 'y'])
out_ = LabelTensor(torch.tensor([[0.]]), ['u'])
class Poisson(SpatialProblem):
output_variables = ['u']
spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})
conditions = {
'gamma1': Condition(
location=CartesianDomain({'x': [0, 1], 'y': 1}),
equation=FixedValue(0.0)),
'gamma2': Condition(
location=CartesianDomain({'x': [0, 1], 'y': 0}),
equation=FixedValue(0.0)),
'gamma3': Condition(
location=CartesianDomain({'x': 1, 'y': [0, 1]}),
equation=FixedValue(0.0)),
'gamma4': Condition(
location=CartesianDomain({'x': 0, 'y': [0, 1]}),
equation=FixedValue(0.0)),
'D': Condition(
input_points=LabelTensor(torch.rand(size=(100, 2)), ['x', 'y']),
equation=my_laplace),
# 'data': Condition(
# input_points=in_,
# output_points=out_)
}
from pina.problem.zoo import Poisson2DSquareProblem as Poisson
# make the problem
poisson_problem = Poisson()
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
boundaries = ['nil_g1', 'nil_g2', 'nil_g3', 'nil_g4']
n = 10
poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
model = FeedForward(len(poisson_problem.input_variables),

View File

@@ -1,59 +1,13 @@
import torch
import pytest
from pina.problem import SpatialProblem
from pina.operators import laplacian
from pina.geometry import CartesianDomain
from pina import Condition, LabelTensor
from pina.solvers import PINN
from pina.trainer import Trainer
from pina.model import FeedForward
from pina.equation.equation import Equation
from pina.equation.equation_factory import FixedValue
from pina.callbacks.processing_callbacks import PINAProgressBar
def laplace_equation(input_, output_):
force_term = (torch.sin(input_.extract(['x']) * torch.pi) *
torch.sin(input_.extract(['y']) * torch.pi))
delta_u = laplacian(output_.extract(['u']), input_)
return delta_u - force_term
my_laplace = Equation(laplace_equation)
in_ = LabelTensor(torch.tensor([[0., 1.]]), ['x', 'y'])
out_ = LabelTensor(torch.tensor([[0.]]), ['u'])
class Poisson(SpatialProblem):
output_variables = ['u']
spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})
conditions = {
'gamma1': Condition(
location=CartesianDomain({'x': [0, 1], 'y': 1}),
equation=FixedValue(0.0)),
'gamma2': Condition(
location=CartesianDomain({'x': [0, 1], 'y': 0}),
equation=FixedValue(0.0)),
'gamma3': Condition(
location=CartesianDomain({'x': 1, 'y': [0, 1]}),
equation=FixedValue(0.0)),
'gamma4': Condition(
location=CartesianDomain({'x': 0, 'y': [0, 1]}),
equation=FixedValue(0.0)),
'D': Condition(
input_points=LabelTensor(torch.rand(size=(100, 2)), ['x', 'y']),
equation=my_laplace),
'data': Condition(
input_points=in_,
output_points=out_)
}
from pina.problem.zoo import Poisson2DSquareProblem as Poisson
# make the problem
poisson_problem = Poisson()
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
boundaries = ['nil_g1', 'nil_g2', 'nil_g3', 'nil_g4']
n = 10
poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
model = FeedForward(len(poisson_problem.input_variables),

View File

@@ -0,0 +1,7 @@
import torch
import pytest
from pina.problem.zoo import Poisson2DSquareProblem
def test_constructor():
Poisson2DSquareProblem()