diff --git a/docs/source/_rst/tutorial1/tutorial-1.rst b/docs/source/_rst/tutorial1/tutorial-1.rst index b5490c7..9b9e085 100644 --- a/docs/source/_rst/tutorial1/tutorial-1.rst +++ b/docs/source/_rst/tutorial1/tutorial-1.rst @@ -12,7 +12,8 @@ The problem is written as: :raw-latex:`\begin{equation} \Delta u = \sin{(\pi x)} \sin{(\pi y)} \text{ in } D, \\ u = 0 \text{ on } \Gamma_1 \cup \Gamma_2 \cup \Gamma_3 \cup \Gamma_4, \end{cases} -\end{equation}` where :math:`D` is a square domain :math:`[0,1]^2`, and +\end{equation}` +where :math:`D` is a square domain :math:`[0,1]^2`, and :math:`\Gamma_i`, with :math:`i=1,...,4`, are the boundaries of the square. @@ -56,11 +57,16 @@ be compared with the predicted one. return output_['u'] - value conditions = { - 'gamma1': Condition(Span({'x': bounds_x, 'y': bounds_y[-1]}), nil_dirichlet), - 'gamma2': Condition(Span({'x': bounds_x, 'y': bounds_y[0]}), nil_dirichlet), - 'gamma3': Condition(Span({'x': bounds_x[-1], 'y': bounds_y}), nil_dirichlet), - 'gamma4': Condition(Span({'x': bounds_x[0], 'y': bounds_y}), nil_dirichlet), - 'D': Condition(Span({'x': bounds_x, 'y': bounds_y}), laplace_equation), + 'gamma1': Condition( + Span({'x': bounds_x, 'y': bounds_y[-1]}), nil_dirichlet), + 'gamma2': Condition( + Span({'x': bounds_x, 'y': bounds_y[0]}), nil_dirichlet), + 'gamma3': Condition( + Span({'x': bounds_x[-1], 'y': bounds_y}), nil_dirichlet), + 'gamma4': Condition( + Span({'x': bounds_x[0], 'y': bounds_y}), nil_dirichlet), + 'D': Condition( + Span({'x': bounds_x, 'y': bounds_y}), laplace_equation), } def poisson_sol(self, x, y): return -(np.sin(x*np.pi)*np.sin(y*np.pi))/(2*np.pi**2) @@ -91,19 +97,13 @@ training phase of the PINN. input_variables=poisson_problem.input_variables) pinn = PINN(poisson_problem, model, lr=0.003, regularizer=1e-8) - pinn.span_pts(20, 'grid', ['D']) - pinn.span_pts(20, 'grid', ['gamma1', 'gamma2', 'gamma3', 'gamma4']) + pinn.span_pts(20, 'grid', locations=['gamma1', 'gamma2', 'gamma3', 'gamma4']) + pinn.span_pts(20, 'grid', locations=['D']) pinn.train(5000, 100) -.. parsed-literal:: - - 2.384537034558816e-05 - - - The loss trend is saved in a dedicated txt file located in *tutorial1_files*. @@ -160,8 +160,8 @@ the cell below is also in this case the final loss of PINN. super(myFeature, self).__init__() def forward(self, x): - return (torch.sin(x['x']*torch.pi) * - torch.sin(x['y']*torch.pi)) + return LabelTensor(torch.sin(x.extract(['x'])*torch.pi) * + torch.sin(x.extract(['y'])*torch.pi), 'k') feat = [myFeature()] model_feat = FeedForward(layers=[10, 10], @@ -170,18 +170,13 @@ the cell below is also in this case the final loss of PINN. extra_features=feat) pinn_feat = PINN(poisson_problem, model_feat, lr=0.003, regularizer=1e-8) - pinn_feat.span_pts(20, 'grid', ['D']) - pinn_feat.span_pts(20, 'grid', ['gamma1', 'gamma2', 'gamma3', 'gamma4']) + pinn_feat.span_pts(20, 'grid', locations=['gamma1', 'gamma2', 'gamma3', 'gamma4']) + pinn.feat_span_pts(20, 'grid', locations=['D']) pinn_feat.train(5000, 100) -.. parsed-literal:: - - 7.93498870023341e-07 - - The losses are saved in a txt file as for the basic Poisson case. @@ -208,8 +203,8 @@ represented below. The problem solution with learnable extra-features ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -Another way to predict the solution is to add a parametric forcing term -of the Laplace equation as an extra-feature. The parameters added in the +Another way to predict the solution is to add a parametric extra-feature. +The parameters added in the expression of the extra-feature are learned during the training phase of the neural network. For example, considering two parameters, the parameteric extra-feature is written as: @@ -218,75 +213,26 @@ parameteric extra-feature is written as: \mathbf{k}(\mathbf{x}, \mathbf{y}) = \beta \sin{(\alpha \mathbf{x})} \sin{(\alpha \mathbf{y})} \end{equation}` -The new Poisson problem is defined in the dedicated class -*ParametricPoisson*, where the domain is no more only spatial, but -includes the parameters’ space. In our case, the parameters’ bounds are -0 and 30. - -.. code:: ipython3 - - from pina.problem import ParametricProblem - - class ParametricPoisson(SpatialProblem, ParametricProblem): - bounds_x = [0, 1] - bounds_y = [0, 1] - bounds_alpha = [0, 30] - bounds_beta = [0, 30] - spatial_variables = ['x', 'y'] - parameters = ['alpha', 'beta'] - output_variables = ['u'] - domain = Span({'x': bounds_x, 'y': bounds_y}) - - def laplace_equation(input_, output_): - force_term = (torch.sin(input_['x']*torch.pi) * - torch.sin(input_['y']*torch.pi)) - return nabla(output_['u'], input_).flatten() - force_term - - def nil_dirichlet(input_, output_): - value = 0.0 - return output_['u'] - value - - conditions = { - 'gamma1': Condition( - Span({'x': bounds_x, 'y': bounds_y[1], 'alpha': bounds_alpha, 'beta': bounds_beta}), - nil_dirichlet), - 'gamma2': Condition( - Span({'x': bounds_x, 'y': bounds_y[0], 'alpha': bounds_alpha, 'beta': bounds_beta}), - nil_dirichlet), - 'gamma3': Condition( - Span({'x': bounds_x[1], 'y': bounds_y, 'alpha': bounds_alpha, 'beta': bounds_beta}), - nil_dirichlet), - 'gamma4': Condition( - Span({'x': bounds_x[0], 'y': bounds_y, 'alpha': bounds_alpha, 'beta': bounds_beta}), - nil_dirichlet), - 'D': Condition( - Span({'x': bounds_x, 'y': bounds_y, 'alpha': bounds_alpha, 'beta': bounds_beta}), - laplace_equation), - } - - def poisson_sol(self, x, y): - return -(np.sin(x*np.pi)*np.sin(y*np.pi))/(2*np.pi**2) - - Here, as done for the other cases, the new parametric feature is defined -and the neural network is re-initialized and trained, considering as two -additional parameters :math:`\alpha` and :math:`\beta`. +and the neural network is re-initialized and trained. .. code:: ipython3 - param_poisson_problem = ParametricPoisson() - - class myFeature(torch.nn.Module): + class LearnableFeature(torch.nn.Module): """ """ def __init__(self): super(myFeature, self).__init__() + self.beta = torch.nn.Parameter(torch.Tensor([1.0])) + self.alpha = torch.nn.Parameter(torch.Tensor([1.0])) def forward(self, x): - return (x['beta']*torch.sin(x['alpha']*x['x']*torch.pi)* - torch.sin(x['alpha']*x['y']*torch.pi)) + return LabelTensor( + self.beta*torch.sin(self.alpha*x.extract(['x'])*torch.pi)* + torch.sin(self.alpha*x.extract(['y'])*torch.pi), + 'k') - feat = [myFeature()] + feat = [LearnableFeature()] model_learn = FeedForward(layers=[10, 10], output_variables=param_poisson_problem.output_variables, input_variables=param_poisson_problem.input_variables, @@ -300,12 +246,6 @@ additional parameters :math:`\alpha` and :math:`\beta`. -.. parsed-literal:: - - 3.265163986679126e-06 - - - The losses are saved as for the other two cases trained above. .. code:: ipython3 @@ -316,7 +256,7 @@ The losses are saved as for the other two cases trained above. pinn_learn.save_state('tutorial1_files/pina.poisson_learn_feat') Here the plots for the prediction error (below on the right) shows that -the prediction coming from the **parametric PINN** is more accurate than +the prediction coming from the latter version is more accurate than the one of the basic version of PINN. .. code:: ipython3 diff --git a/examples/problems/burgers.py b/examples/problems/burgers.py index 2c3cd87..48e6081 100644 --- a/examples/problems/burgers.py +++ b/examples/problems/burgers.py @@ -14,13 +14,12 @@ class Burgers1D(TimeDependentProblem, SpatialProblem): domain = Span({'x': [-1, 1], 't': [0, 1]}) def burger_equation(input_, output_): - grad_u = grad(output_.extract(['u']), input_) - grad_x = grad_u.extract(['x']) - grad_t = grad_u.extract(['t']) - gradgrad_u_x = grad(grad_u.extract(['x']), input_) + du = grad(output_, input_) + ddu = grad(du, input_, components=['dudx']) return ( - grad_u.extract(['t']) + output_.extract(['u'])*grad_u.extract(['x']) - - (0.01/torch.pi)*gradgrad_u_x.extract(['x']) + du.extract(['dudt']) + + output_.extract(['u'])*du.extract(['dudx']) - + (0.01/torch.pi)*ddu.extract(['ddudxdx']) ) def nil_dirichlet(input_, output_): diff --git a/examples/problems/parametric_elliptic_optimal_control_alpha_variable.py b/examples/problems/parametric_elliptic_optimal_control_alpha_variable.py index dd12ebe..194fdb5 100644 --- a/examples/problems/parametric_elliptic_optimal_control_alpha_variable.py +++ b/examples/problems/parametric_elliptic_optimal_control_alpha_variable.py @@ -1,52 +1,59 @@ import numpy as np import torch -from pina.problem import Problem -from pina.segment import Segment -from pina.cube import Cube -from pina.problem2d import Problem2D -xmin, xmax, ymin, ymax = -1, 1, -1, 1 - -class ParametricEllipticOptimalControl(Problem2D): - - def __init__(self, alpha=1): - - def term1(input_, param_, output_): - grad_p = self.grad(output_['p'], input_) - gradgrad_p_x1 = self.grad(grad_p['x1'], input_) - gradgrad_p_x2 = self.grad(grad_p['x2'], input_) - #print('mu', input_['mu']) - return output_['y'] - input_['mu'] - (gradgrad_p_x1['x1'] + gradgrad_p_x2['x2']) - - def term2(input_, param_, output_): - grad_y = self.grad(output_['y'], input_) - gradgrad_y_x1 = self.grad(grad_y['x1'], input_) - gradgrad_y_x2 = self.grad(grad_y['x2'], input_) - return - (gradgrad_y_x1['x1'] + gradgrad_y_x2['x2']) - output_['u_param'] - - def term3(input_, param_, output_): - #print('a', input_['alpha'], output_['p'], output_['u_param']) - return output_['p'] - output_['u_param']*input_['alpha'] +from pina import Span, Condition +from pina.problem import SpatialProblem, ParametricProblem +from pina.operators import grad, nabla - def nil_dirichlet(input_, param_, output_): - y_value = 0.0 - p_value = 0.0 - return torch.abs(output_['y'] - y_value) + torch.abs(output_['p'] - p_value) +class ParametricEllipticOptimalControl(SpatialProblem, ParametricProblem): - self.conditions = { - 'gamma1': {'location': Segment((xmin, ymin), (xmax, ymin)), 'func': nil_dirichlet}, - 'gamma2': {'location': Segment((xmax, ymin), (xmax, ymax)), 'func': nil_dirichlet}, - 'gamma3': {'location': Segment((xmax, ymax), (xmin, ymax)), 'func': nil_dirichlet}, - 'gamma4': {'location': Segment((xmin, ymax), (xmin, ymin)), 'func': nil_dirichlet}, - 'D1': {'location': Cube([[xmin, xmax], [ymin, ymax]]), 'func': [term1, term2]}, - #'D2': {'location': Cube([[0, 1], [0, 1]]), 'func': term2}, - #'D3': {'location': Cube([[0, 1], [0, 1]]), 'func': term3} - } + xmin, xmax, ymin, ymax = -1, 1, -1, 1 + amin, amax = 0.0001, 1 + mumin, mumax = 0.5, 3 + mu_range = [mumin, mumax] + a_range = [amin, amax] + x_range = [xmin, xmax] + y_range = [ymin, ymax] - self.input_variables = ['x1', 'x2'] - self.output_variables = ['u', 'p', 'y'] - self.parameters = ['mu', 'alpha'] - self.spatial_domain = Cube([[xmin, xmax], [xmin, xmax]]) - self.parameter_domain = np.array([[0.5, 3], [0.0001, 1]]) + spatial_variables = ['x1', 'x2'] + parameters = ['mu', 'alpha'] + output_variables = ['u', 'p', 'y'] + domain = Span({ + 'x1': x_range, 'x2': y_range, 'mu': mu_range, 'alpha': a_range}) + + def term1(input_, output_): + laplace_p = nabla(output_, input_, components=['p'], d=['x1', 'x2']) + return output_.extract(['y']) - input_.extract(['mu']) - laplace_p + + def term2(input_, output_): + laplace_y = nabla(output_, input_, components=['y'], d=['x1', 'x2']) + return - laplace_y - output_.extract(['u_param']) + + def state_dirichlet(input_, output_): + y_exp = 0.0 + return output_.extract(['y']) - y_exp + + def adj_dirichlet(input_, output_): + p_exp = 0.0 + return output_.extract(['p']) - p_exp + + conditions = { + 'gamma1': Condition( + Span({'x1': x_range, 'x2': 1, 'mu': mu_range, 'alpha': a_range}), + [state_dirichlet, adj_dirichlet]), + 'gamma2': Condition( + Span({'x1': x_range, 'x2': -1, 'mu': mu_range, 'alpha': a_range}), + [state_dirichlet, adj_dirichlet]), + 'gamma3': Condition( + Span({'x1': 1, 'x2': y_range, 'mu': mu_range, 'alpha': a_range}), + [state_dirichlet, adj_dirichlet]), + 'gamma4': Condition( + Span({'x1': -1, 'x2': y_range, 'mu': mu_range, 'alpha': a_range}), + [state_dirichlet, adj_dirichlet]), + 'D': Condition( + Span({'x1': x_range, 'x2': y_range, + 'mu': mu_range, 'alpha': a_range}), + [term1, term2]), + } diff --git a/examples/problems/parametric_poisson.py b/examples/problems/parametric_poisson.py index 9f29ee0..cf03ce5 100644 --- a/examples/problems/parametric_poisson.py +++ b/examples/problems/parametric_poisson.py @@ -14,8 +14,8 @@ class ParametricPoisson(SpatialProblem, ParametricProblem): def laplace_equation(input_, output_): force_term = torch.exp( - - 2*(input_.extract(['x']) - input_.extract(['mu1']))**2 - 2*(input_.extract(['y']) - - input_.extract(['mu2']))**2) + - 2*(input_.extract(['x']) - input_.extract(['mu1']))**2 + - 2*(input_.extract(['y']) - input_.extract(['mu2']))**2) return nabla(output_.extract(['u']), input_) - force_term def nil_dirichlet(input_, output_): diff --git a/examples/problems/poisson.py b/examples/problems/poisson.py index 912db38..845a587 100644 --- a/examples/problems/poisson.py +++ b/examples/problems/poisson.py @@ -23,11 +23,11 @@ class Poisson(SpatialProblem): return output_.extract(['u']) - value conditions = { - 'gamma1': Condition(Span({'x': [-1, 1], 'y': 1}), nil_dirichlet), - 'gamma2': Condition(Span({'x': [-1, 1], 'y': -1}), nil_dirichlet), - 'gamma3': Condition(Span({'x': 1, 'y': [-1, 1]}), nil_dirichlet), - 'gamma4': Condition(Span({'x': -1, 'y': [-1, 1]}), nil_dirichlet), - 'D': Condition(Span({'x': [-1, 1], 'y': [-1, 1]}), laplace_equation), + 'gamma1': Condition(Span({'x': [0, 1], 'y': 1}), nil_dirichlet), + 'gamma2': Condition(Span({'x': [0, 1], 'y': 0}), nil_dirichlet), + 'gamma3': Condition(Span({'x': 1, 'y': [0, 1]}), nil_dirichlet), + 'gamma4': Condition(Span({'x': 0, 'y': [0, 1]}), nil_dirichlet), + 'D': Condition(Span({'x': [0, 1], 'y': [0, 1]}), laplace_equation), } def poisson_sol(self, x, y): diff --git a/examples/run_burgers.py b/examples/run_burgers.py index 7bf8ba8..52f8ffb 100644 --- a/examples/run_burgers.py +++ b/examples/run_burgers.py @@ -2,9 +2,9 @@ import argparse import torch from torch.nn import Softplus -from pina import PINN, Plotter +from pina import PINN, Plotter, LabelTensor from pina.model import FeedForward -from problems.burgers import Burgers1D +from burger2 import Burgers1D class myFeature(torch.nn.Module): @@ -16,7 +16,7 @@ class myFeature(torch.nn.Module): self.idx = idx def forward(self, x): - return torch.sin(torch.pi * x[:, self.idx]) + return LabelTensor(torch.sin(torch.pi * x.extract(['x'])), ['sin(x)']) if __name__ == "__main__": @@ -45,12 +45,14 @@ if __name__ == "__main__": model, lr=0.006, error_norm='mse', - regularizer=0, - lr_accelerate=None) + regularizer=0) if args.s: - pinn.span_pts(2000, 'latin', ['D']) - pinn.span_pts(150, 'random', ['gamma1', 'gamma2', 't0']) + pinn.span_pts( + {'n': 200, 'mode': 'random', 'variables': 't'}, + {'n': 20, 'mode': 'random', 'variables': 'x'}, + locations=['D']) + pinn.span_pts(150, 'random', location=['gamma1', 'gamma2', 't0']) pinn.train(5000, 100) pinn.save_state('pina.burger.{}.{}'.format(args.id_run, args.features)) else: diff --git a/examples/run_parametric_elliptic_optimal_control_alpha.py b/examples/run_parametric_elliptic_optimal_control_alpha.py index b3b73b5..77ce007 100644 --- a/examples/run_parametric_elliptic_optimal_control_alpha.py +++ b/examples/run_parametric_elliptic_optimal_control_alpha.py @@ -1,16 +1,11 @@ +import argparse import numpy as np import torch -import argparse -from pina.pinn import PINN -from pina.ppinn import ParametricPINN as pPINN -from pina.label_tensor import LabelTensor from torch.nn import ReLU, Tanh, Softplus -from pina.adaptive_functions.adaptive_softplus import AdaptiveSoftplus -from problems.parametric_elliptic_optimal_control_alpha_variable import ParametricEllipticOptimalControl -from pina.multi_deep_feed_forward import MultiDeepFeedForward -from pina.deep_feed_forward import DeepFeedForward -alpha = 1 +from pina import PINN, LabelTensor +from parametric_elliptic_optimal_control_alpha_variable2 import ParametricEllipticOptimalControl +from pina.model import MultiFeedForward, FeedForward class myFeature(torch.nn.Module): """ @@ -21,46 +16,21 @@ class myFeature(torch.nn.Module): super(myFeature, self).__init__() def forward(self, x): - return (-x[:, 0]**2+1) * (-x[:, 1]**2+1) + t = (-x.extract(['x1'])**2+1) * (-x.extract(['x2'])**2+1) + return LabelTensor(t, ['k0']) -class CustomMultiDFF(MultiDeepFeedForward): +class CustomMultiDFF(MultiFeedForward): def __init__(self, dff_dict): super().__init__(dff_dict) def forward(self, x): out = self.uu(x) - p = LabelTensor((out['u_param'] * x[:, 3]).reshape(-1, 1), ['p']) - a = LabelTensor.hstack([out, p]) - return a - -model = CustomMultiDFF( - { - 'uu': { - 'input_variables': ['x1', 'x2', 'mu', 'alpha'], - 'output_variables': ['u_param', 'y'], - 'layers': [40, 40, 20], - 'func': Softplus, - 'extra_features': [myFeature()], - }, - # 'u_param': { - # 'input_variables': ['u', 'mu'], - # 'output_variables': ['u_param'], - # 'layers': [], - # 'func': None - # }, - # 'p': { - # 'input_variables': ['u'], - # 'output_variables': ['p'], - # 'layers': [10], - # 'func': None - # }, - } -) + p = LabelTensor((out.extract(['u_param']) * x.extract(['alpha'])), ['p']) + return out.append(p) -opc = ParametricEllipticOptimalControl(alpha) if __name__ == "__main__": @@ -70,138 +40,39 @@ if __name__ == "__main__": group.add_argument("-l", "-load", action="store_true") args = parser.parse_args() - # model = DeepFeedForward( - # layers=[40, 40, 20], - # output_variables=['u_param', 'y', 'p'], - # input_variables=opc.input_variables+['mu', 'alpha'], - # func=Softplus, - # extra_features=[myFeature()] - # ) + opc = ParametricEllipticOptimalControl() + model = CustomMultiDFF( + { + 'uu': { + 'input_variables': ['x1', 'x2', 'mu', 'alpha'], + 'output_variables': ['u_param', 'y'], + 'layers': [40, 40, 20], + 'func': Softplus, + 'extra_features': [myFeature()], + }, + } + ) - - pinn = pPINN( + pinn = PINN( opc, model, lr=0.002, error_norm='mse', - regularizer=1e-8, - lr_accelerate=None) + regularizer=1e-8) if args.s: - pinn.span_pts(30, 'grid', ['D1']) - pinn.span_pts(50, 'grid', ['gamma1', 'gamma2', 'gamma3', 'gamma4']) - pinn.train(10000, 20) - # with open('ocp_wrong_history.txt', 'w') as file_: - # for i, losses in enumerate(pinn.history): - # file_.write('{} {}\n'.format(i, sum(losses).item())) + pinn.span_pts( + {'variables': ['x1', 'x2'], 'mode': 'random', 'n': 100}, + {'variables': ['mu', 'alpha'], 'mode': 'grid', 'n': 5}, + locations=['D']) + pinn.span_pts( + {'variables': ['x1', 'x2'], 'mode': 'grid', 'n': 20}, + {'variables': ['mu', 'alpha'], 'mode': 'grid', 'n': 5}, + locations=['gamma1', 'gamma2', 'gamma3', 'gamma4']) + pinn.train(10000, 20) pinn.save_state('pina.ocp') else: - pinn.load_state('working.pina.ocp') pinn.load_state('pina.ocp') - - import matplotlib - matplotlib.use('GTK3Agg') - import matplotlib.pyplot as plt - - # res = 64 - # param = torch.tensor([[3., 1]]) - # pts_container = [] - # for mn, mx in [[-1, 1], [-1, 1]]: - # pts_container.append(np.linspace(mn, mx, res)) - # grids_container = np.meshgrid(*pts_container) - # unrolled_pts = torch.tensor([t.flatten() for t in grids_container]).T - # unrolled_pts = torch.cat([unrolled_pts, param.double().repeat(unrolled_pts.shape[0], 1).reshape(-1, 2)], axis=1) - - # unrolled_pts = LabelTensor(unrolled_pts, ['x1', 'x2', 'mu', 'alpha']) - # Z_pred = pinn.model(unrolled_pts.tensor) - # print(Z_pred.tensor.shape) - - # plt.subplot(2, 3, 1) - # plt.pcolor(Z_pred['y'].reshape(res, res).detach()) - # plt.colorbar() - # plt.subplot(2, 3, 2) - # plt.pcolor(Z_pred['u_param'].reshape(res, res).detach()) - # plt.colorbar() - # plt.subplot(2, 3, 3) - # plt.pcolor(Z_pred['p'].reshape(res, res).detach()) - # plt.colorbar() - # with open('ocp_mu3_a1_plot.txt', 'w') as f_: - # f_.write('x y u p ys\n') - # for (x, y), tru, pre, e in zip(unrolled_pts[:, :2], - # Z_pred['u_param'].reshape(-1, 1), - # Z_pred['p'].reshape(-1, 1), - # Z_pred['y'].reshape(-1, 1), - # ): - # f_.write('{} {} {} {} {}\n'.format(x.item(), y.item(), tru.item(), pre.item(), e.item())) - - - # param = torch.tensor([[3.0, 0.01]]) - # unrolled_pts = torch.tensor([t.flatten() for t in grids_container]).T - # unrolled_pts = torch.cat([unrolled_pts, param.double().repeat(unrolled_pts.shape[0], 1).reshape(-1, 2)], axis=1) - # unrolled_pts = LabelTensor(unrolled_pts, ['x1', 'x2', 'mu', 'alpha']) - # Z_pred = pinn.model(unrolled_pts.tensor) - - # plt.subplot(2, 3, 4) - # plt.pcolor(Z_pred['y'].reshape(res, res).detach()) - # plt.colorbar() - # plt.subplot(2, 3, 5) - # plt.pcolor(Z_pred['u_param'].reshape(res, res).detach()) - # plt.colorbar() - # plt.subplot(2, 3, 6) - # plt.pcolor(Z_pred['p'].reshape(res, res).detach()) - # plt.colorbar() - - # plt.show() - # with open('ocp_mu3_a0.01_plot.txt', 'w') as f_: - # f_.write('x y u p ys\n') - # for (x, y), tru, pre, e in zip(unrolled_pts[:, :2], - # Z_pred['u_param'].reshape(-1, 1), - # Z_pred['p'].reshape(-1, 1), - # Z_pred['y'].reshape(-1, 1), - # ): - # f_.write('{} {} {} {} {}\n'.format(x.item(), y.item(), tru.item(), pre.item(), e.item())) - - - - - y = {} - u = {} - for alpha in [0.01, 0.1, 1]: - y[alpha] = [] - u[alpha] = [] - for p in np.linspace(0.5, 3, 32): - a = pinn.model(LabelTensor(torch.tensor([[0, 0, p, alpha]]).double(), ['x1', 'x2', 'mu', 'alpha']).tensor) - y[alpha].append(a['y'].detach().numpy()[0]) - u[alpha].append(a['u_param'].detach().numpy()[0]) - - - - plt.plot(np.linspace(0.5, 3, 32), u[1], label='u') - plt.plot(np.linspace(0.5, 3, 32), u[0.01], label='u') - plt.plot(np.linspace(0.5, 3, 32), u[0.1], label='u') - plt.plot([1, 2, 3], [0.28, 0.56, 0.85], 'o', label='Truth values') - plt.legend() - plt.show() - print(y[1]) - print(y[0.1]) - print(y[0.01]) - with open('elliptic_param_y.txt', 'w') as f_: - f_.write('mu 1 01 001\n') - for mu, y1, y01, y001 in zip(np.linspace(0.5, 3, 32), y[1], y[0.1], y[0.01]): - f_.write('{} {} {} {}\n'.format(mu, y1, y01, y001)) - - with open('elliptic_param_u.txt', 'w') as f_: - f_.write('mu 1 01 001\n') - for mu, y1, y01, y001 in zip(np.linspace(0.5, 3, 32), u[1], u[0.1], u[0.01]): - f_.write('{} {} {} {}\n'.format(mu, y1, y01, y001)) - - - plt.plot(np.linspace(0.5, 3, 32), y, label='y') - plt.plot([1, 2, 3], [0.062, 0.12, 0.19], 'o', label='Truth values') - plt.legend() - plt.show() - - diff --git a/examples/run_parametric_poisson.py b/examples/run_parametric_poisson.py index b3c88e3..063892f 100644 --- a/examples/run_parametric_poisson.py +++ b/examples/run_parametric_poisson.py @@ -1,9 +1,8 @@ import argparse import torch from torch.nn import Softplus -from pina import Plotter -from pina import PINN as pPINN -from problems.parametric_poisson import ParametricPoisson +from pina import Plotter, LabelTensor, PINN +from parametric_poisson2 import ParametricPoisson from pina.model import FeedForward @@ -14,7 +13,13 @@ class myFeature(torch.nn.Module): super(myFeature, self).__init__() def forward(self, x): - return torch.exp(- 2*(x.extract(['x']) - x.extract(['mu1']))**2 - 2*(x.extract(['y']) - x.extract(['mu2']))**2) + t = ( + torch.exp( + - 2*(x.extract(['x']) - x.extract(['mu1']))**2 + - 2*(x.extract(['y']) - x.extract(['mu2']))**2 + ) + ) + return LabelTensor(t, ['k0']) if __name__ == "__main__": @@ -38,21 +43,23 @@ if __name__ == "__main__": extra_features=feat ) - pinn = pPINN( + pinn = PINN( poisson_problem, model, - lr=0.0006, + lr=0.006, regularizer=1e-6) if args.s: - pinn.span_pts(500, n_params=10, mode_spatial='random', locations=['D']) - pinn.span_pts(200, n_params=10, mode_spatial='random', locations=['gamma1', 'gamma2', 'gamma3', 'gamma4']) - pinn.plot_pts() + pinn.span_pts( + {'variables': ['x', 'y'], 'mode': 'random', 'n': 100}, + {'variables': ['mu1', 'mu2'], 'mode': 'grid', 'n': 5}, + locations=['D']) + pinn.span_pts( + {'variables': ['x', 'y'], 'mode': 'grid', 'n': 20}, + {'variables': ['mu1', 'mu2'], 'mode': 'grid', 'n': 5}, + locations=['gamma1', 'gamma2', 'gamma3', 'gamma4']) pinn.train(10000, 100) - with open('param_poisson_history_{}_{}.txt'.format(args.id_run, args.features), 'w') as file_: - for i, losses in enumerate(pinn.history): - file_.write('{} {}\n'.format(i, sum(losses))) pinn.save_state('pina.poisson_param') else: diff --git a/examples/run_poisson.py b/examples/run_poisson.py index 8df0fcb..aecd206 100644 --- a/examples/run_poisson.py +++ b/examples/run_poisson.py @@ -7,7 +7,7 @@ from torch.nn import ReLU, Tanh, Softplus from pina import PINN, LabelTensor, Plotter from pina.model import FeedForward from pina.adaptive_functions import AdaptiveSin, AdaptiveCos, AdaptiveTanh -from problems.poisson import Poisson +from poisson2 import Poisson class myFeature(torch.nn.Module): @@ -19,7 +19,9 @@ class myFeature(torch.nn.Module): super(myFeature, self).__init__() def forward(self, x): - return torch.sin(x[:, 0]*torch.pi) * torch.sin(x[:, 1]*torch.pi) + t = (torch.sin(x.extract(['x'])*torch.pi) * + torch.sin(x.extract(['y'])*torch.pi)) + return LabelTensor(t, ['sin(x)sin(y)']) if __name__ == "__main__": @@ -51,14 +53,9 @@ if __name__ == "__main__": if args.s: - print(pinn) - pinn.span_pts(20, mode_spatial='grid', locations=['gamma1', 'gamma2', 'gamma3', 'gamma4']) - pinn.span_pts(20, mode_spatial='grid', locations=['D']) - pinn.plot_pts() + pinn.span_pts(20, 'grid', locations=['gamma1', 'gamma2', 'gamma3', 'gamma4']) + pinn.span_pts(20, 'grid', locations=['D']) pinn.train(5000, 100) - with open('poisson_history_{}_{}.txt'.format(args.id_run, args.features), 'w') as file_: - for i, losses in enumerate(pinn.history): - file_.write('{} {}\n'.format(i, sum(losses))) pinn.save_state('pina.poisson') else: diff --git a/pina/condition.py b/pina/condition.py index 48e5464..09c4399 100644 --- a/pina/condition.py +++ b/pina/condition.py @@ -39,3 +39,5 @@ class Condition: else: raise ValueError + if hasattr(self, 'function') and not isinstance(self.function, list): + self.function = [self.function] diff --git a/pina/label_tensor.py b/pina/label_tensor.py index be8ced1..139678e 100644 --- a/pina/label_tensor.py +++ b/pina/label_tensor.py @@ -55,6 +55,8 @@ class LabelTensor(torch.Tensor): [0.9518, 0.1025], [0.8066, 0.9615]]) ''' + if x.ndim == 1: + x = x.reshape(-1, 1) if isinstance(labels, str): labels = [labels] @@ -130,3 +132,8 @@ class LabelTensor(torch.Tensor): new_labels = self.labels + lt.labels new_tensor = torch.cat((self, lt), dim=1) return LabelTensor(new_tensor, new_labels) + + def __str__(self): + s = f'labels({str(self.labels)})\n' + s += super().__str__() + return s diff --git a/pina/model/deeponet.py b/pina/model/deeponet.py index 753ae17..fddbe8d 100644 --- a/pina/model/deeponet.py +++ b/pina/model/deeponet.py @@ -2,9 +2,8 @@ import torch import torch.nn as nn -from pina.label_tensor import LabelTensor -import warnings -import copy +from pina import LabelTensor + class DeepONet(torch.nn.Module): """ @@ -75,39 +74,24 @@ class DeepONet(torch.nn.Module): self.trunk_net = trunk_net self.branch_net = branch_net - if features: + # if features: # if len(features) != features_net.layers[0].in_features: # raise ValueError('Incompatible features') # if trunk_out_dim != features_net.layers[-1].out_features: # raise ValueError('Incompatible features') - self.features = features + # self.features = features # self.features_net = nn.Sequential( # nn.Linear(len(features), 10), nn.Softplus(), # # nn.Linear(10, 10), nn.Softplus(), # nn.Linear(10, trunk_out_dim) # ) - self.features_net = nn.Sequential( - nn.Linear(len(features), trunk_out_dim) - ) - - - + # self.features_net = nn.Sequential( + # nn.Linear(len(features), trunk_out_dim) + # ) self.reduction = nn.Linear(trunk_out_dim, self.output_dimension) - # print(self.branch_net.output_variables) - # print(self.trunk_net.output_variables) - # if isinstance(self.branch_net.output_variables, int) and isinstance(self.branch_net.output_variables, int): - # if self.branch_net.output_dimension == self.trunk_net.output_dimension: - # self.inner_size = self.branch_net.output_dimension - # print('qui') - # else: - # raise ValueError('Branch and trunk networks have not the same output dimension.') - # else: - # warnings.warn("The output dimension of the branch and trunk networks has been imposed by default as 10 for each output variable. To set it change the output_variable of networks to an integer.") - # self.inner_size = self.output_dimension*inner_size - @property def input_variables(self): """The input variables of the model""" @@ -121,19 +105,33 @@ class DeepONet(torch.nn.Module): :return: the output computed by the model. :rtype: LabelTensor """ - input_feature = [] - for feature in self.features: - #print(feature) - input_feature.append(feature(x)) - input_feature = torch.cat(input_feature, dim=1) + # print(x.shape) + #input_feature = [] + #for feature in self.features: + # #print(feature) + # input_feature.append(feature(x)) + #input_feature = torch.cat(input_feature, dim=1) branch_output = self.branch_net( x.extract(self.branch_net.input_variables)) + # print(branch_output.shape) trunk_output = self.trunk_net( x.extract(self.trunk_net.input_variables)) - feat_output = self.features_net(input_feature) - output_ = self.reduction(branch_output * trunk_output * feat_output) - output_ = self.reduction(trunk_output * feat_output) + # print(trunk_output.shape) + #feat_output = self.features_net(input_feature) + # print(feat_output.shape) + # inner_input = torch.cat([ + # branch_output * trunk_output, + # branch_output, + # trunk_output, + # feat_output], dim=1) + # print(inner_input.shape) + + # output_ = self.reduction(inner_input) + # print(output_.shape) + print(branch_output.shape) + print(trunk_output.shape) + output_ = self.reduction(trunk_output * branch_output) output_ = LabelTensor(output_, self.output_variables) # local_size = int(trunk_output.shape[1]/self.output_dimension) # for i, var in enumerate(self.output_variables): diff --git a/pina/model/feed_forward.py b/pina/model/feed_forward.py index 4acb068..f3d887a 100644 --- a/pina/model/feed_forward.py +++ b/pina/model/feed_forward.py @@ -93,20 +93,10 @@ class FeedForward(torch.nn.Module): if self.input_variables: x = x.extract(self.input_variables) - labels = [] - features = [] for i, feature in enumerate(self.extra_features): - labels.append('k{}'.format(i)) - features.append(feature(x)) - - if labels and features: - features = torch.cat(features, dim=1) - features_tensor = LabelTensor(features, labels) - input_ = x.append(features_tensor) # TODO error when no LabelTens - else: - input_ = x + x = x.append(feature(x)) if self.output_variables: - return LabelTensor(self.model(input_), self.output_variables) + return LabelTensor(self.model(x), self.output_variables) else: - return self.model(input_) + return self.model(x) diff --git a/pina/operators.py b/pina/operators.py index e140065..b87132a 100644 --- a/pina/operators.py +++ b/pina/operators.py @@ -4,62 +4,158 @@ import torch from pina.label_tensor import LabelTensor -def grad(output_, input_): +def grad(output_, input_, components=None, d=None): + """ + TODO + """ + + def grad_scalar_output(output_, input_, d): + """ + """ + + if len(output_.labels) != 1: + raise RuntimeError + if not all([di in input_.labels for di in d]): + raise RuntimeError + + output_fieldname = output_.labels[0] + + gradients = torch.autograd.grad( + output_, + input_, + grad_outputs=torch.ones(output_.size()).to( + dtype=input_.dtype, + device=input_.device), + create_graph=True, retain_graph=True, allow_unused=True)[0] + gradients.labels = input_.labels + gradients = gradients.extract(d) + gradients.labels = [f'd{output_fieldname}d{i}' for i in d] + + return gradients + + if not isinstance(input_, LabelTensor): + raise TypeError + + if d is None: + d = input_.labels + + if components is None: + components = output_.labels + + if output_.shape[1] == 1: # scalar output ################################ + + if components != output_.labels: + raise RuntimeError + gradients = grad_scalar_output(output_, input_, d) + + elif output_.shape[1] >= 2: # vector output ############################## + + for i, c in enumerate(components): + c_output = output_.extract([c]) + if i == 0: + gradients = grad_scalar_output(c_output, input_, d) + else: + gradients = gradients.append( + grad_scalar_output(c_output, input_, d)) + else: + raise NotImplementedError + + return gradients + + +def div(output_, input_, components=None, d=None): """ TODO """ if not isinstance(input_, LabelTensor): raise TypeError - gradients = torch.autograd.grad( - output_, - input_, - grad_outputs=torch.ones(output_.size()).to( - dtype=input_.dtype, - device=input_.device), - create_graph=True, retain_graph=True, allow_unused=True)[0] - return LabelTensor(gradients, input_.labels) + if d is None: + d = input_.labels + + if components is None: + components = output_.labels + + if output_.shape[1] < 2 or len(components) < 2: + raise ValueError('div supported only for vector field') + + if len(components) != len(d): + raise ValueError + + grad_output = grad(output_, input_, components, d) + div = torch.empty(input_.shape[0], len(components)) + labels = [None] * len(components) + for i, c in enumerate(components): + c_fields = [f'd{c}d{di}' for di in d] + div[:, i] = grad_output.extract(c_fields).sum(axis=1) + labels[i] = '+'.join(c_fields) + + return LabelTensor(div, labels) -def div(output_, input_): +def nabla(output_, input_, components=None, d=None, method='std'): """ TODO """ - if output_.shape[1] == 1: - div = grad(output_, input_).sum(axis=1) - else: # really to improve - a = [] - for o in output_.T: - a.append(grad(o, input_).extract(['x', 'y'])) - div = torch.zeros(output_.shape[0], 1) - for i in range(output_.shape[1]): - div += a[i][:, i].reshape(-1, 1) + if d is None: + d = input_.labels - return div + if components is None: + components = output_.labels + + if len(components) != len(d) and len(components) != 1: + raise ValueError + + if method == 'divgrad': + raise NotImplementedError + # TODO fix + # grad_output = grad(output_, input_, components, d) + # result = div(grad_output, input_, d=d) + elif method == 'std': + + if len(components) == 1: + grad_output = grad(output_, input_, components=components, d=d) + result = torch.zeros(output_.shape[0], 1) + for i, label in enumerate(grad_output.labels): + gg = grad(grad_output, input_, d=d, components=[label]) + result[:, 0] += gg[:, i] + labels = [f'dd{components[0]}'] + + else: + result = torch.empty(input_.shape[0], len(components)) + labels = [None] * len(components) + for idx, (ci, di) in enumerate(zip(components, d)): + + if not isinstance(ci, list): + ci = [ci] + if not isinstance(di, list): + di = [di] + + grad_output = grad(output_, input_, components=ci, d=di) + result[:, idx] = grad(grad_output, input_, d=di).flatten() + labels[idx] = f'dd{ci}dd{di}' + + return LabelTensor(result, labels) -def nabla(output_, input_): - """ - TODO - """ - return div(grad(output_, input_).extract(['x', 'y']), input_) - - -def advection_term(output_, input_): +def advection(output_, input_): """ TODO """ dimension = len(output_.labels) for i, label in enumerate(output_.labels): - # compute u dot gradient in each direction - gradient_loc = grad(output_.extract([label]), input_).extract(input_.labels[:dimension]) + # compute u dot gradient in each direction + gradient_loc = grad(output_.extract([label]), + input_).extract(input_.labels[:dimension]) dim_0 = gradient_loc.shape[0] dim_1 = gradient_loc.shape[1] u_dot_grad_loc = torch.bmm(output_.view(dim_0, 1, dim_1), - gradient_loc.view(dim_0, dim_1, 1)) + gradient_loc.view(dim_0, dim_1, 1)) u_dot_grad_loc = LabelTensor(torch.reshape(u_dot_grad_loc, - (u_dot_grad_loc.shape[0], u_dot_grad_loc.shape[1])), [input_.labels[i]]) - if i==0: + (u_dot_grad_loc.shape[0], + u_dot_grad_loc.shape[1])), + [input_.labels[i]]) + if i == 0: adv_term = u_dot_grad_loc else: adv_term = adv_term.append(u_dot_grad_loc) diff --git a/pina/pinn.py b/pina/pinn.py index 1f0f3b9..9a1b24e 100644 --- a/pina/pinn.py +++ b/pina/pinn.py @@ -123,6 +123,7 @@ class PINN(object): def span_pts(self, *args, **kwargs): """ >>> pinn.span_pts(n=10, mode='grid') + >>> pinn.span_pts(n=10, mode='grid', location=['bound1']) >>> pinn.span_pts(n=10, mode='grid', variables=['x']) """ @@ -133,23 +134,30 @@ class PINN(object): n1 = tensor1.shape[0] n2 = tensor2.shape[0] - tensor1 = LabelTensor(tensor1.repeat(n2, 1), labels=tensor1.labels) + tensor1 = LabelTensor( + tensor1.repeat(n2, 1), + labels=tensor1.labels) tensor2 = LabelTensor( - tensor2.repeat_interleave(n1, dim=0), labels=tensor2.labels) + tensor2.repeat_interleave(n1, dim=0), + labels=tensor2.labels) return tensor1.append(tensor2) - else: - pass + elif len(tensors): + return tensors[0] if isinstance(args[0], int) and isinstance(args[1], str): - pass - variables = self.problem.input_variables + argument = {} + argument['n'] = int(args[0]) + argument['mode'] = args[1] + argument['variables'] = self.problem.input_variables + arguments = [argument] elif all(isinstance(arg, dict) for arg in args): - print(args) arguments = args - pass elif all(key in kwargs for key in ['n', 'mode']): - variables = self.problem.input_variables - pass + argument = {} + argument['n'] = kwargs['n'] + argument['mode'] = kwargs['mode'] + argument['variables'] = self.problem.input_variables + arguments = [argument] else: raise RuntimeError @@ -174,26 +182,23 @@ class PINN(object): self.input_pts[location].requires_grad_(True) self.input_pts[location].retain_grad() - - def plot_pts(self, locations='all'): - import matplotlib - # matplotlib.use('GTK3Agg') - if locations == 'all': - locations = [condition for condition in self.problem.conditions] - for location in locations: - x = self.input_pts[location].extract(['x']) - y = self.input_pts[location].extract(['y']) - plt.plot(x.detach(), y.detach(), '.', label=location) - # np.savetxt('burgers_{}_pts.txt'.format(location), self.input_pts[location].tensor.detach(), header='x y', delimiter=' ') - plt.legend() - plt.show() - - - def train(self, stop=100, frequency_print=2, trial=None): epoch = 0 + header = [] + for condition_name in self.problem.conditions: + condition = self.problem.conditions[condition_name] + + if hasattr(condition, 'function'): + if isinstance(condition.function, list): + for function in condition.function: + header.append(f'{condition_name}{function.__name__}') + + continue + + header.append(f'{condition_name}') + while True: losses = [] @@ -204,23 +209,20 @@ class PINN(object): if hasattr(condition, 'function'): pts = self.input_pts[condition_name] predicted = self.model(pts) - if isinstance(condition.function, list): - for function in condition.function: - residuals = function(pts, predicted) - local_loss = condition.data_weight*self._compute_norm(residuals) - losses.append(local_loss) - else: - residuals = condition.function(pts, predicted) - local_loss = condition.data_weight*self._compute_norm(residuals) + for function in condition.function: + residuals = function(pts, predicted) + local_loss = ( + condition.data_weight*self._compute_norm( + residuals)) losses.append(local_loss) elif hasattr(condition, 'output_points'): pts = condition.input_points - # print(pts) predicted = self.model(pts) - # print(predicted) residuals = predicted - condition.output_points - local_loss = condition.data_weight*self._compute_norm(residuals) + local_loss = ( + condition.data_weight*self._compute_norm(residuals)) losses.append(local_loss) + self.optimizer.zero_grad() sum(losses).backward() @@ -239,12 +241,21 @@ class PINN(object): if isinstance(stop, int): if epoch == stop: + print('[epoch {:05d}] {:.6e} '.format(self.trained_epoch, sum(losses).item()), end='') + for loss in losses: + print('{:.6e} '.format(loss), end='') + print() break elif isinstance(stop, float): if sum(losses) < stop: break - if epoch % frequency_print == 0: + if epoch % frequency_print == 0 or epoch == 1: + print(' {:5s} {:12s} '.format('', 'sum'), end='') + for name in header: + print('{:12.12s} '.format(name), end='') + print() + print('[epoch {:05d}] {:.6e} '.format(self.trained_epoch, sum(losses).item()), end='') for loss in losses: print('{:.6e} '.format(loss), end='') diff --git a/pina/plotter.py b/pina/plotter.py index b87988d..88dd2db 100644 --- a/pina/plotter.py +++ b/pina/plotter.py @@ -79,7 +79,7 @@ class Plotter: - def plot(self, obj, method='contourf', component='u', parametric=False, params_value=1, filename=None): + def plot(self, obj, method='contourf', component='u', parametric=False, params_value=1.5, filename=None): """ """ res = 256 diff --git a/pina/span.py b/pina/span.py index fd1ca12..f8e2053 100644 --- a/pina/span.py +++ b/pina/span.py @@ -22,7 +22,7 @@ class Span(Location): def sample(self, n, mode='random', variables='all'): - if variables=='all': + if variables == 'all': spatial_range_ = list(self.range_.keys()) spatial_fixed_ = list(self.fixed_.keys()) bounds = np.array(list(self.range_.values())) @@ -41,6 +41,7 @@ class Span(Location): fixed.append(int(self.fixed_[variable])) fixed = torch.Tensor(fixed) bounds = np.array(bounds) + if mode == 'random': pts = np.random.uniform(size=(n, bounds.shape[0])) elif mode == 'chebyshev': @@ -59,6 +60,7 @@ class Span(Location): from scipy.stats import qmc sampler = qmc.LatinHypercube(d=bounds.shape[0]) pts = sampler.random(n) + # Scale pts pts *= bounds[:, 1] - bounds[:, 0] pts += bounds[:, 0] diff --git a/tests/test_fnn.py b/tests/test_fnn.py index 2aa367e..71204f4 100644 --- a/tests/test_fnn.py +++ b/tests/test_fnn.py @@ -12,7 +12,7 @@ class myFeature(torch.nn.Module): super(myFeature, self).__init__() def forward(self, x): - return torch.sin(torch.pi * x.extract('a')) + return LabelTensor(torch.sin(torch.pi * x.extract('a')), 'sin(a)') data = torch.rand((20, 3)) diff --git a/tests/test_label_tensor.py b/tests/test_label_tensor.py index b2ab58f..df112fa 100644 --- a/tests/test_label_tensor.py +++ b/tests/test_label_tensor.py @@ -72,9 +72,8 @@ def test_merge(): def test_merge(): tensor = LabelTensor(data, labels) - tensor_a = tensor.extract('a') tensor_b = tensor.extract('b') tensor_c = tensor.extract('c') - tensor_bb = tensor_b.append(tensor_b) - assert torch.allclose(tensor_b, tensor.extract(['b', 'c'])) + tensor_bc = tensor_b.append(tensor_c) + assert torch.allclose(tensor_bc, tensor.extract(['b', 'c']))