Adding new problems to problem.zoo (#484)
* adding problems * add tests * update doc + formatting --------- Co-authored-by: Dario Coscia <dariocos99@gmail.com>
This commit is contained in:
committed by
Nicola Demo
parent
2ae4a94e49
commit
f67467e5bd
107
pina/problem/zoo/advection.py
Normal file
107
pina/problem/zoo/advection.py
Normal file
@@ -0,0 +1,107 @@
|
||||
"""Formulation of the advection problem."""
|
||||
|
||||
import torch
|
||||
from ... import Condition
|
||||
from ...operator import grad
|
||||
from ...equation import Equation
|
||||
from ...domain import CartesianDomain
|
||||
from ...utils import check_consistency
|
||||
from ...problem import SpatialProblem, TimeDependentProblem
|
||||
|
||||
|
||||
class AdvectionEquation(Equation):
|
||||
"""
|
||||
Implementation of the advection equation.
|
||||
"""
|
||||
|
||||
def __init__(self, c):
|
||||
"""
|
||||
Initialize the advection equation.
|
||||
|
||||
:param c: The advection velocity parameter.
|
||||
:type c: float | int
|
||||
"""
|
||||
self.c = c
|
||||
check_consistency(self.c, (float, int))
|
||||
|
||||
def equation(input_, output_):
|
||||
"""
|
||||
Implementation of the advection equation.
|
||||
|
||||
:param LabelTensor input_: Input data of the problem.
|
||||
:param LabelTensor output_: Output data of the problem.
|
||||
:return: The residual of the advection equation.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
u_x = grad(output_, input_, components=["u"], d=["x"])
|
||||
u_t = grad(output_, input_, components=["u"], d=["t"])
|
||||
return u_t + self.c * u_x
|
||||
|
||||
super().__init__(equation)
|
||||
|
||||
|
||||
def initial_condition(input_, output_):
|
||||
"""
|
||||
Implementation of the initial condition.
|
||||
|
||||
:param LabelTensor input_: Input data of the problem.
|
||||
:param LabelTensor output_: Output data of the problem.
|
||||
:return: The residual of the initial condition.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
return output_ - torch.sin(input_.extract("x"))
|
||||
|
||||
|
||||
class AdvectionProblem(SpatialProblem, TimeDependentProblem):
|
||||
r"""
|
||||
Implementation of the advection problem in the spatial interval
|
||||
:math:`[0, 2 \pi]` and temporal interval :math:`[0, 1]`.
|
||||
|
||||
.. seealso::
|
||||
|
||||
**Original reference**: Wang, Sifan, et al. *An expert's guide to
|
||||
training physics-informed neural networks*.
|
||||
arXiv preprint arXiv:2308.08468 (2023).
|
||||
DOI: `arXiv:2308.08468 <https://arxiv.org/abs/2308.08468>`_.
|
||||
"""
|
||||
|
||||
output_variables = ["u"]
|
||||
spatial_domain = CartesianDomain({"x": [0, 2 * torch.pi]})
|
||||
temporal_domain = CartesianDomain({"t": [0, 1]})
|
||||
|
||||
domains = {
|
||||
"D": CartesianDomain({"x": [0, 2 * torch.pi], "t": [0, 1]}),
|
||||
"t0": CartesianDomain({"x": [0, 2 * torch.pi], "t": 0.0}),
|
||||
}
|
||||
|
||||
conditions = {
|
||||
"t0": Condition(domain="t0", equation=Equation(initial_condition)),
|
||||
}
|
||||
|
||||
def __init__(self, c=1.0):
|
||||
"""
|
||||
Initialize the advection problem.
|
||||
|
||||
:param c: The advection velocity parameter.
|
||||
:type c: float | int
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.c = c
|
||||
check_consistency(self.c, (float, int))
|
||||
|
||||
self.conditions["D"] = Condition(
|
||||
domain="D", equation=AdvectionEquation(self.c)
|
||||
)
|
||||
|
||||
def solution(self, pts):
|
||||
"""
|
||||
Implementation of the analytical solution of the advection problem.
|
||||
|
||||
:param LabelTensor pts: Points where the solution is evaluated.
|
||||
:return: The analytical solution of the advection problem.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
sol = torch.sin(pts.extract("x") - self.c * pts.extract("t"))
|
||||
sol.labels = self.output_variables
|
||||
return sol
|
||||
Reference in New Issue
Block a user