Adding new problems to problem.zoo (#484)
* adding problems * add tests * update doc + formatting --------- Co-authored-by: Dario Coscia <dariocos99@gmail.com>
This commit is contained in:
committed by
Nicola Demo
parent
2ae4a94e49
commit
f67467e5bd
66
pina/problem/zoo/allen_cahn.py
Normal file
66
pina/problem/zoo/allen_cahn.py
Normal file
@@ -0,0 +1,66 @@
|
||||
"""Formulation of the Allen Cahn problem."""
|
||||
|
||||
import torch
|
||||
from ... import Condition
|
||||
from ...equation import Equation
|
||||
from ...domain import CartesianDomain
|
||||
from ...operator import grad, laplacian
|
||||
from ...problem import SpatialProblem, TimeDependentProblem
|
||||
|
||||
|
||||
def allen_cahn_equation(input_, output_):
|
||||
"""
|
||||
Implementation of the Allen Cahn equation.
|
||||
|
||||
:param LabelTensor input_: Input data of the problem.
|
||||
:param LabelTensor output_: Output data of the problem.
|
||||
:return: The residual of the Allen Cahn equation.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
u_t = grad(output_, input_, components=["u"], d=["t"])
|
||||
u_xx = laplacian(output_, input_, components=["u"], d=["x"])
|
||||
return u_t - 0.0001 * u_xx + 5 * output_**3 - 5 * output_
|
||||
|
||||
|
||||
def initial_condition(input_, output_):
|
||||
"""
|
||||
Definition of the initial condition of the Allen Cahn problem.
|
||||
|
||||
:param LabelTensor input_: Input data of the problem.
|
||||
:param LabelTensor output_: Output data of the problem.
|
||||
:return: The residual of the initial condition.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
x = input_.extract("x")
|
||||
u_0 = x**2 * torch.cos(torch.pi * x)
|
||||
return output_ - u_0
|
||||
|
||||
|
||||
class AllenCahnProblem(TimeDependentProblem, SpatialProblem):
|
||||
r"""
|
||||
Implementation of the Allen Cahn problem in the spatial interval
|
||||
:math:`[-1, 1]` and temporal interval :math:`[0, 1]`.
|
||||
|
||||
.. seealso::
|
||||
**Original reference**: Sokratis J. Anagnostopoulos, Juan D. Toscano,
|
||||
Nikolaos Stergiopulos, and George E. Karniadakis.
|
||||
*Residual-based attention and connection to information
|
||||
bottleneck theory in PINNs*.
|
||||
Computer Methods in Applied Mechanics and Engineering 421 (2024): 116805
|
||||
DOI: `10.1016/
|
||||
j.cma.2024.116805 <https://doi.org/10.1016/j.cma.2024.116805>`_.
|
||||
"""
|
||||
|
||||
output_variables = ["u"]
|
||||
spatial_domain = CartesianDomain({"x": [-1, 1]})
|
||||
temporal_domain = CartesianDomain({"t": [0, 1]})
|
||||
|
||||
domains = {
|
||||
"D": CartesianDomain({"x": [-1, 1], "t": [0, 1]}),
|
||||
"t0": CartesianDomain({"x": [-1, 1], "t": 0.0}),
|
||||
}
|
||||
|
||||
conditions = {
|
||||
"D": Condition(domain="D", equation=Equation(allen_cahn_equation)),
|
||||
"t0": Condition(domain="t0", equation=Equation(initial_condition)),
|
||||
}
|
||||
Reference in New Issue
Block a user