Adding new problems to problem.zoo (#484)
* adding problems * add tests * update doc + formatting --------- Co-authored-by: Dario Coscia <dariocos99@gmail.com>
This commit is contained in:
committed by
Nicola Demo
parent
2ae4a94e49
commit
f67467e5bd
@@ -1,17 +1,23 @@
|
||||
"""Definition of the inverse Poisson problem on a square domain."""
|
||||
"""Formulation of the inverse Poisson problem in a square domain."""
|
||||
|
||||
import os
|
||||
import torch
|
||||
from pina import Condition, LabelTensor
|
||||
from pina.problem import SpatialProblem, InverseProblem
|
||||
from pina.operator import laplacian
|
||||
from pina.domain import CartesianDomain
|
||||
from pina.equation.equation import Equation
|
||||
from pina.equation.equation_factory import FixedValue
|
||||
from ... import Condition
|
||||
from ...operator import laplacian
|
||||
from ...domain import CartesianDomain
|
||||
from ...equation import Equation, FixedValue
|
||||
from ...problem import SpatialProblem, InverseProblem
|
||||
|
||||
|
||||
def laplace_equation(input_, output_, params_):
|
||||
"""
|
||||
Implementation of the laplace equation.
|
||||
|
||||
:param LabelTensor input_: Input data of the problem.
|
||||
:param LabelTensor output_: Output data of the problem.
|
||||
:param dict params_: Parameters of the problem.
|
||||
:return: The residual of the laplace equation.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
force_term = torch.exp(
|
||||
-2 * (input_.extract(["x"]) - params_["mu1"]) ** 2
|
||||
@@ -21,17 +27,34 @@ def laplace_equation(input_, output_, params_):
|
||||
return delta_u - force_term
|
||||
|
||||
|
||||
# Absolute path to the data directory
|
||||
data_dir = os.path.abspath(
|
||||
os.path.join(
|
||||
os.path.dirname(__file__), "../../../tutorials/tutorial7/data/"
|
||||
)
|
||||
)
|
||||
|
||||
# Load input data
|
||||
input_data = torch.load(
|
||||
f=os.path.join(data_dir, "pts_0.5_0.5"), weights_only=False
|
||||
).extract(["x", "y"])
|
||||
|
||||
# Load output data
|
||||
output_data = torch.load(
|
||||
f=os.path.join(data_dir, "pinn_solution_0.5_0.5"), weights_only=False
|
||||
)
|
||||
|
||||
|
||||
class InversePoisson2DSquareProblem(SpatialProblem, InverseProblem):
|
||||
"""
|
||||
Implementation of the inverse 2-dimensional Poisson problem
|
||||
on a square domain, with parameter domain [-1, 1] x [-1, 1].
|
||||
r"""
|
||||
Implementation of the inverse 2-dimensional Poisson problem in the square
|
||||
domain :math:`[0, 1] \times [0, 1]`,
|
||||
with unknown parameter domain :math:`[-1, 1] \times [-1, 1]`.
|
||||
"""
|
||||
|
||||
output_variables = ["u"]
|
||||
x_min, x_max = -2, 2
|
||||
y_min, y_max = -2, 2
|
||||
data_input = LabelTensor(torch.rand(10, 2), ["x", "y"])
|
||||
data_output = LabelTensor(torch.rand(10, 1), ["u"])
|
||||
spatial_domain = CartesianDomain({"x": [x_min, x_max], "y": [y_min, y_max]})
|
||||
unknown_parameter_domain = CartesianDomain({"mu1": [-1, 1], "mu2": [-1, 1]})
|
||||
|
||||
@@ -44,13 +67,10 @@ class InversePoisson2DSquareProblem(SpatialProblem, InverseProblem):
|
||||
}
|
||||
|
||||
conditions = {
|
||||
"nil_g1": Condition(domain="g1", equation=FixedValue(0.0)),
|
||||
"nil_g2": Condition(domain="g2", equation=FixedValue(0.0)),
|
||||
"nil_g3": Condition(domain="g3", equation=FixedValue(0.0)),
|
||||
"nil_g4": Condition(domain="g4", equation=FixedValue(0.0)),
|
||||
"laplace_D": Condition(domain="D", equation=Equation(laplace_equation)),
|
||||
"data": Condition(
|
||||
input=data_input.extract(["x", "y"]),
|
||||
target=data_output,
|
||||
),
|
||||
"g1": Condition(domain="g1", equation=FixedValue(0.0)),
|
||||
"g2": Condition(domain="g2", equation=FixedValue(0.0)),
|
||||
"g3": Condition(domain="g3", equation=FixedValue(0.0)),
|
||||
"g4": Condition(domain="g4", equation=FixedValue(0.0)),
|
||||
"D": Condition(domain="D", equation=Equation(laplace_equation)),
|
||||
"data": Condition(input=input_data, target=output_data),
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user