Adding new problems to problem.zoo (#484)

* adding problems
* add tests
* update doc + formatting

---------

Co-authored-by: Dario Coscia <dariocos99@gmail.com>
This commit is contained in:
Giovanni Canali
2025-03-12 10:42:16 +01:00
committed by Nicola Demo
parent 2ae4a94e49
commit f67467e5bd
21 changed files with 570 additions and 168 deletions

View File

@@ -1,17 +1,23 @@
"""Definition of the inverse Poisson problem on a square domain."""
"""Formulation of the inverse Poisson problem in a square domain."""
import os
import torch
from pina import Condition, LabelTensor
from pina.problem import SpatialProblem, InverseProblem
from pina.operator import laplacian
from pina.domain import CartesianDomain
from pina.equation.equation import Equation
from pina.equation.equation_factory import FixedValue
from ... import Condition
from ...operator import laplacian
from ...domain import CartesianDomain
from ...equation import Equation, FixedValue
from ...problem import SpatialProblem, InverseProblem
def laplace_equation(input_, output_, params_):
"""
Implementation of the laplace equation.
:param LabelTensor input_: Input data of the problem.
:param LabelTensor output_: Output data of the problem.
:param dict params_: Parameters of the problem.
:return: The residual of the laplace equation.
:rtype: LabelTensor
"""
force_term = torch.exp(
-2 * (input_.extract(["x"]) - params_["mu1"]) ** 2
@@ -21,17 +27,34 @@ def laplace_equation(input_, output_, params_):
return delta_u - force_term
# Absolute path to the data directory
data_dir = os.path.abspath(
os.path.join(
os.path.dirname(__file__), "../../../tutorials/tutorial7/data/"
)
)
# Load input data
input_data = torch.load(
f=os.path.join(data_dir, "pts_0.5_0.5"), weights_only=False
).extract(["x", "y"])
# Load output data
output_data = torch.load(
f=os.path.join(data_dir, "pinn_solution_0.5_0.5"), weights_only=False
)
class InversePoisson2DSquareProblem(SpatialProblem, InverseProblem):
"""
Implementation of the inverse 2-dimensional Poisson problem
on a square domain, with parameter domain [-1, 1] x [-1, 1].
r"""
Implementation of the inverse 2-dimensional Poisson problem in the square
domain :math:`[0, 1] \times [0, 1]`,
with unknown parameter domain :math:`[-1, 1] \times [-1, 1]`.
"""
output_variables = ["u"]
x_min, x_max = -2, 2
y_min, y_max = -2, 2
data_input = LabelTensor(torch.rand(10, 2), ["x", "y"])
data_output = LabelTensor(torch.rand(10, 1), ["u"])
spatial_domain = CartesianDomain({"x": [x_min, x_max], "y": [y_min, y_max]})
unknown_parameter_domain = CartesianDomain({"mu1": [-1, 1], "mu2": [-1, 1]})
@@ -44,13 +67,10 @@ class InversePoisson2DSquareProblem(SpatialProblem, InverseProblem):
}
conditions = {
"nil_g1": Condition(domain="g1", equation=FixedValue(0.0)),
"nil_g2": Condition(domain="g2", equation=FixedValue(0.0)),
"nil_g3": Condition(domain="g3", equation=FixedValue(0.0)),
"nil_g4": Condition(domain="g4", equation=FixedValue(0.0)),
"laplace_D": Condition(domain="D", equation=Equation(laplace_equation)),
"data": Condition(
input=data_input.extract(["x", "y"]),
target=data_output,
),
"g1": Condition(domain="g1", equation=FixedValue(0.0)),
"g2": Condition(domain="g2", equation=FixedValue(0.0)),
"g3": Condition(domain="g3", equation=FixedValue(0.0)),
"g4": Condition(domain="g4", equation=FixedValue(0.0)),
"D": Condition(domain="D", equation=Equation(laplace_equation)),
"data": Condition(input=input_data, target=output_data),
}