fix doc model part 2

This commit is contained in:
giovanni
2025-03-14 16:07:08 +01:00
committed by Nicola Demo
parent 001d1fc9cf
commit f9881a79b5
18 changed files with 887 additions and 851 deletions

View File

@@ -1,5 +1,5 @@
"""
Module for Fourier Block implementation.
Module for the Fourier Neural Operator Block class.
"""
import torch
@@ -15,15 +15,19 @@ from .spectral import (
class FourierBlock1D(nn.Module):
"""
Fourier block implementation for three dimensional
input tensor. The combination of Fourier blocks
make up the Fourier Neural Operator
The inner block of the Fourier Neural Operator for 1-dimensional input
tensors.
The module computes the spectral convolution of the input with a linear
kernel in the fourier space, and then it maps the input back to the physical
space. The output is then added to a Linear tranformation of the input in
the physical space. Finally an activation function is applied to the output.
.. seealso::
**Original reference**: Li, Z., Kovachki, N., Azizzadenesheli, K.,
Liu, B., Bhattacharya, K., Stuart, A., & Anandkumar, A. (2020). *Fourier
neural operator for parametric partial differential equations*.
Liu, B., Bhattacharya, K., Stuart, A., & Anandkumar, A. (2020).
*Fourier neural operator for parametric partial differential equations*.
DOI: `arXiv preprint arXiv:2010.08895.
<https://arxiv.org/abs/2010.08895>`_
@@ -36,22 +40,16 @@ class FourierBlock1D(nn.Module):
n_modes,
activation=torch.nn.Tanh,
):
"""
PINA implementation of Fourier block one dimension. The module computes
the spectral convolution of the input with a linear kernel in the
fourier space, and then it maps the input back to the physical
space. The output is then added to a Linear tranformation of the
input in the physical space. Finally an activation function is
applied to the output.
The block expects an input of size ``[batch, input_numb_fields, N]``
and returns an output of size ``[batch, output_numb_fields, N]``.
r"""
Initialization of the :class:`FourierBlock1D` class.
:param int input_numb_fields: The number of channels for the input.
:param int output_numb_fields: The number of channels for the output.
:param list | tuple n_modes: Number of modes to select for each
dimension. It must be at most equal to the ``floor(N/2)+1``.
:param n_modes: The number of modes to select for each dimension.
It must be at most equal to :math:`\floor(Nx/2)+1`.
:type n_modes: list[int] | tuple[int]
:param torch.nn.Module activation: The activation function.
Default is :class:`torch.nn.Tanh`.
"""
super().__init__()
@@ -70,15 +68,11 @@ class FourierBlock1D(nn.Module):
def forward(self, x):
"""
Forward computation for Fourier Block. It performs a spectral
convolution and a linear transformation of the input and sum the
results.
Forward pass of the block. It performs a spectral convolution and a
linear transformation of the input. Then, it sums the results.
:param x: The input tensor for fourier block, expect of size
``[batch, input_numb_fields, x]``.
:type x: torch.Tensor
:return: The output tensor obtained from the
fourier block of size ``[batch, output_numb_fields, x]``.
:param torch.Tensor x: The input tensor for performing the computation.
:return: The output tensor.
:rtype: torch.Tensor
"""
return self._activation(self._spectral_conv(x) + self._linear(x))
@@ -86,18 +80,21 @@ class FourierBlock1D(nn.Module):
class FourierBlock2D(nn.Module):
"""
Fourier block implementation for two dimensional
input tensor. The combination of Fourier blocks
make up the Fourier Neural Operator
The inner block of the Fourier Neural Operator for 2-dimensional input
tensors.
The module computes the spectral convolution of the input with a linear
kernel in the fourier space, and then it maps the input back to the physical
space. The output is then added to a Linear tranformation of the input in
the physical space. Finally an activation function is applied to the output.
.. seealso::
**Original reference**: Li, Zongyi, et al.
*Fourier neural operator for parametric partial
differential equations*. arXiv preprint
arXiv:2010.08895 (2020)
<https://arxiv.org/abs/2010.08895.pdf>`_.
**Original reference**: Li, Z., Kovachki, N., Azizzadenesheli, K.,
Liu, B., Bhattacharya, K., Stuart, A., & Anandkumar, A. (2020).
*Fourier neural operator for parametric partial differential equations*.
DOI: `arXiv preprint arXiv:2010.08895.
<https://arxiv.org/abs/2010.08895>`_
"""
def __init__(
@@ -107,24 +104,17 @@ class FourierBlock2D(nn.Module):
n_modes,
activation=torch.nn.Tanh,
):
"""
PINA implementation of Fourier block two dimensions. The module computes
the spectral convolution of the input with a linear kernel in the
fourier space, and then it maps the input back to the physical
space. The output is then added to a Linear tranformation of the
input in the physical space. Finally an activation function is
applied to the output.
The block expects an input of size
``[batch, input_numb_fields, Nx, Ny]`` and returns an output of size
``[batch, output_numb_fields, Nx, Ny]``.
r"""
Initialization of the :class:`FourierBlock2D` class.
:param int input_numb_fields: The number of channels for the input.
:param int output_numb_fields: The number of channels for the output.
:param list | tuple n_modes: Number of modes to select for each
dimension. It must be at most equal to the ``floor(Nx/2)+1``
and ``floor(Ny/2)+1``.
:param n_modes: The number of modes to select for each dimension.
It must be at most equal to :math:`\floor(Nx/2)+1`,
:math:`\floor(Ny/2)+1`.
:type n_modes: list[int] | tuple[int]
:param torch.nn.Module activation: The activation function.
Default is :class:`torch.nn.Tanh`.
"""
super().__init__()
@@ -142,15 +132,11 @@ class FourierBlock2D(nn.Module):
def forward(self, x):
"""
Forward computation for Fourier Block. It performs a spectral
convolution and a linear transformation of the input and sum the
results.
Forward pass of the block. It performs a spectral convolution and a
linear transformation of the input. Then, it sums the results.
:param x: The input tensor for fourier block, expect of size
``[batch, input_numb_fields, x, y]``.
:type x: torch.Tensor
:return: The output tensor obtained from the
fourier block of size ``[batch, output_numb_fields, x, y, z]``.
:param torch.Tensor x: The input tensor for performing the computation.
:return: The output tensor.
:rtype: torch.Tensor
"""
return self._activation(self._spectral_conv(x) + self._linear(x))
@@ -158,18 +144,21 @@ class FourierBlock2D(nn.Module):
class FourierBlock3D(nn.Module):
"""
Fourier block implementation for three dimensional
input tensor. The combination of Fourier blocks
make up the Fourier Neural Operator
The inner block of the Fourier Neural Operator for 3-dimensional input
tensors.
The module computes the spectral convolution of the input with a linear
kernel in the fourier space, and then it maps the input back to the physical
space. The output is then added to a Linear tranformation of the input in
the physical space. Finally an activation function is applied to the output.
.. seealso::
**Original reference**: Li, Zongyi, et al.
*Fourier neural operator for parametric partial
differential equations*. arXiv preprint
arXiv:2010.08895 (2020)
<https://arxiv.org/abs/2010.08895.pdf>`_.
**Original reference**: Li, Z., Kovachki, N., Azizzadenesheli, K.,
Liu, B., Bhattacharya, K., Stuart, A., & Anandkumar, A. (2020).
*Fourier neural operator for parametric partial differential equations*.
DOI: `arXiv preprint arXiv:2010.08895.
<https://arxiv.org/abs/2010.08895>`_
"""
def __init__(
@@ -179,24 +168,17 @@ class FourierBlock3D(nn.Module):
n_modes,
activation=torch.nn.Tanh,
):
"""
PINA implementation of Fourier block three dimensions. The module
computes the spectral convolution of the input with a linear kernel in
the fourier space, and then it maps the input back to the physical
space. The output is then added to a Linear tranformation of the
input in the physical space. Finally an activation function is
applied to the output.
The block expects an input of size
``[batch, input_numb_fields, Nx, Ny, Nz]`` and returns an output of size
``[batch, output_numb_fields, Nx, Ny, Nz]``.
r"""
Initialization of the :class:`FourierBlock3D` class.
:param int input_numb_fields: The number of channels for the input.
:param int output_numb_fields: The number of channels for the output.
:param list | tuple n_modes: Number of modes to select for each
dimension. It must be at most equal to the ``floor(Nx/2)+1``,
``floor(Ny/2)+1`` and ``floor(Nz/2)+1``.
:param n_modes: The number of modes to select for each dimension.
It must be at most equal to :math:`\floor(Nx/2)+1`,
:math:`\floor(Ny/2)+1`, :math:`\floor(Nz/2)+1`.
:type n_modes: list[int] | tuple[int]
:param torch.nn.Module activation: The activation function.
Default is :class:`torch.nn.Tanh`.
"""
super().__init__()
@@ -214,15 +196,11 @@ class FourierBlock3D(nn.Module):
def forward(self, x):
"""
Forward computation for Fourier Block. It performs a spectral
convolution and a linear transformation of the input and sum the
results.
Forward pass of the block. It performs a spectral convolution and a
linear transformation of the input. Then, it sums the results.
:param x: The input tensor for fourier block, expect of size
``[batch, input_numb_fields, x, y, z]``.
:type x: torch.Tensor
:return: The output tensor obtained from the
fourier block of size ``[batch, output_numb_fields, x, y, z]``.
:param torch.Tensor x: The input tensor for performing the computation.
:return: The output tensor.
:rtype: torch.Tensor
"""
return self._activation(self._spectral_conv(x) + self._linear(x))