fix doc model part 2

This commit is contained in:
giovanni
2025-03-14 16:07:08 +01:00
committed by Nicola Demo
parent 001d1fc9cf
commit f9881a79b5
18 changed files with 887 additions and 851 deletions

View File

@@ -1,5 +1,5 @@
"""
Module for performing integral for continuous convolution
Module to perform integration for continuous convolution.
"""
import torch
@@ -7,17 +7,18 @@ import torch
class Integral:
"""
Integral class for continous convolution
Class allowing integration for continous convolution.
"""
def __init__(self, param):
"""
Initialize the integral class
Initializzation of the :class:`Integral` class.
:param param: type of continuous convolution
:param param: The type of continuous convolution.
:type param: string
:raises TypeError: If the parameter is neither ``discrete``
nor ``continuous``.
"""
if param == "discrete":
self.make_integral = self.integral_param_disc
elif param == "continuous":
@@ -26,46 +27,47 @@ class Integral:
raise TypeError
def __call__(self, *args, **kwds):
"""
Call the integral function
:param list args: Arguments for the integral function.
:param dict kwds: Keyword arguments for the integral function.
:return: The integral of the input.
:rtype: torch.tensor
"""
return self.make_integral(*args, **kwds)
def _prepend_zero(self, x):
"""Create bins for performing integral
"""
Create bins to perform integration.
:param x: input tensor
:type x: torch.tensor
:return: bins for integrals
:rtype: torch.tensor
:param torch.Tensor x: The input tensor.
:return: The bins for the integral.
:rtype: torch.Tensor
"""
return torch.cat((torch.zeros(1, dtype=x.dtype, device=x.device), x))
def integral_param_disc(self, x, y, idx):
"""Perform discretize integral
with discrete parameters
"""
Perform discrete integration with discrete parameters.
:param x: input vector
:type x: torch.tensor
:param y: input vector
:type y: torch.tensor
:param idx: indeces for different strides
:type idx: list
:return: integral
:rtype: torch.tensor
:param torch.Tensor x: The first input tensor.
:param torch.Tensor y: The second input tensor.
:param list[int] idx: The indices for different strides.
:return: The discrete integral.
:rtype: torch.Tensor
"""
cs_idxes = self._prepend_zero(torch.cumsum(torch.tensor(idx), 0))
cs = self._prepend_zero(torch.cumsum(x.flatten() * y.flatten(), 0))
return cs[cs_idxes[1:]] - cs[cs_idxes[:-1]]
def integral_param_cont(self, x, y, idx):
"""Perform discretize integral for continuous convolution
with continuous parameters
"""
Perform continuous integration with continuous parameters.
:param x: input vector
:type x: torch.tensor
:param y: input vector
:type y: torch.tensor
:param idx: indeces for different strides
:type idx: list
:return: integral
:rtype: torch.tensor
:param torch.Tensor x: The first input tensor.
:param torch.Tensor y: The second input tensor.
:param list[int] idx: The indices for different strides.
:raises NotImplementedError: The method is not implemented.
"""
raise NotImplementedError