fix doc model part 2
This commit is contained in:
@@ -1,4 +1,4 @@
|
||||
"""Module for OrthogonalBlock."""
|
||||
"""Module for the Orthogonal Block class."""
|
||||
|
||||
import torch
|
||||
from ...utils import check_consistency
|
||||
@@ -6,21 +6,24 @@ from ...utils import check_consistency
|
||||
|
||||
class OrthogonalBlock(torch.nn.Module):
|
||||
"""
|
||||
Module to make the input orthonormal.
|
||||
The module takes a tensor of size :math:`[N, M]` and returns a tensor of
|
||||
size :math:`[N, M]` where the columns are orthonormal. The block performs a
|
||||
Gram Schmidt orthogonalization process for the input, see
|
||||
Orthogonal Block.
|
||||
|
||||
This block transforms an input tensor of shape :math:`[N, M]` into a tensor
|
||||
of the same shape whose columns are orthonormal. The block performs the
|
||||
Gram Schmidt orthogonalization, see
|
||||
`here <https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process>` for
|
||||
details.
|
||||
"""
|
||||
|
||||
def __init__(self, dim=-1, requires_grad=True):
|
||||
"""
|
||||
Initialize the OrthogonalBlock module.
|
||||
Initialization of the :class:`OrthogonalBlock` class.
|
||||
|
||||
:param int dim: The dimension where to orthogonalize.
|
||||
:param bool requires_grad: If autograd should record operations on
|
||||
the returned tensor, defaults to True.
|
||||
:param int dim: The dimension on which orthogonalization is performed.
|
||||
If ``-1``, the orthogonalization is performed on the last dimension.
|
||||
Default is ``-1``.
|
||||
:param bool requires_grad: If ``True``, the gradients are computed
|
||||
during the backward pass. Default is ``True``
|
||||
"""
|
||||
super().__init__()
|
||||
# store dim
|
||||
@@ -31,14 +34,13 @@ class OrthogonalBlock(torch.nn.Module):
|
||||
|
||||
def forward(self, X):
|
||||
"""
|
||||
Forward pass of the OrthogonalBlock module using a Gram-Schmidt
|
||||
algorithm.
|
||||
Forward pass.
|
||||
|
||||
:raises Warning: If the dimension is greater than the other dimensions.
|
||||
|
||||
:param torch.Tensor X: The input tensor to orthogonalize. The input must
|
||||
be of dimensions :math:`[N, M]`.
|
||||
:param torch.Tensor X: The input tensor to orthogonalize.
|
||||
:raises Warning: If the chosen dimension is greater than the other
|
||||
dimensions in the input.
|
||||
:return: The orthonormal tensor.
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
# check dim is less than all the other dimensions
|
||||
if X.shape[self.dim] > min(X.shape):
|
||||
@@ -65,13 +67,12 @@ class OrthogonalBlock(torch.nn.Module):
|
||||
|
||||
def _differentiable_copy(self, result, idx, value):
|
||||
"""
|
||||
Perform a differentiable copy operation on a tensor.
|
||||
Perform a differentiable copy operation.
|
||||
|
||||
:param torch.Tensor result: The tensor where values will be copied to.
|
||||
:param torch.Tensor result: The tensor where values are be copied to.
|
||||
:param int idx: The index along the specified dimension where the
|
||||
value will be copied.
|
||||
:param torch.Tensor value: The tensor value to copy into the
|
||||
result tensor.
|
||||
values are copied.
|
||||
:param torch.Tensor value: The tensor value to copy into ``result``.
|
||||
:return: A new tensor with the copied values.
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
@@ -82,7 +83,7 @@ class OrthogonalBlock(torch.nn.Module):
|
||||
@property
|
||||
def dim(self):
|
||||
"""
|
||||
Get the dimension along which operations are performed.
|
||||
The dimension along which operations are performed.
|
||||
|
||||
:return: The current dimension value.
|
||||
:rtype: int
|
||||
@@ -94,10 +95,11 @@ class OrthogonalBlock(torch.nn.Module):
|
||||
"""
|
||||
Set the dimension along which operations are performed.
|
||||
|
||||
:param value: The dimension to be set, which must be 0, 1, or -1.
|
||||
:param value: The dimension to be set. Must be either ``0``, ``1``, or
|
||||
``-1``.
|
||||
:type value: int
|
||||
:raises IndexError: If the provided dimension is not in the
|
||||
range [-1, 1].
|
||||
:raises IndexError: If the provided dimension is not ``0``, ``1``, or
|
||||
``-1``.
|
||||
"""
|
||||
# check consistency
|
||||
check_consistency(value, int)
|
||||
@@ -115,7 +117,7 @@ class OrthogonalBlock(torch.nn.Module):
|
||||
Indicates whether gradient computation is required for operations
|
||||
on the tensors.
|
||||
|
||||
:return: True if gradients are required, False otherwise.
|
||||
:return: ``True`` if gradients are required, ``False`` otherwise.
|
||||
:rtype: bool
|
||||
"""
|
||||
return self._requires_grad
|
||||
|
||||
Reference in New Issue
Block a user