fix doc model part 2
This commit is contained in:
@@ -1,5 +1,5 @@
|
||||
"""
|
||||
TODO
|
||||
Module for utility functions for the convolutional layer.
|
||||
"""
|
||||
|
||||
import torch
|
||||
@@ -7,7 +7,13 @@ import torch
|
||||
|
||||
def check_point(x, current_stride, dim):
|
||||
"""
|
||||
TODO
|
||||
Check if the point is in the current stride.
|
||||
|
||||
:param torch.Tensor x: The input data.
|
||||
:param int current_stride: The current stride.
|
||||
:param int dim: The shape of the filter.
|
||||
:return: The indeces of the points in the current stride.
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
max_stride = current_stride + dim
|
||||
indeces = torch.logical_and(
|
||||
@@ -17,13 +23,12 @@ def check_point(x, current_stride, dim):
|
||||
|
||||
|
||||
def map_points_(x, filter_position):
|
||||
"""Mapping function n dimensional case
|
||||
"""
|
||||
The mapping function for n-dimensional case.
|
||||
|
||||
:param x: input data of two dimension
|
||||
:type x: torch.tensor
|
||||
:param filter_position: position of the filter
|
||||
:type dim: list[numeric]
|
||||
:return: data mapped inplace
|
||||
:param torch.Tensor x: The two-dimensional input data.
|
||||
:param list[int] filter_position: The position of the filter.
|
||||
:return: The data mapped in-place.
|
||||
:rtype: torch.tensor
|
||||
"""
|
||||
x.add_(-filter_position)
|
||||
@@ -32,14 +37,20 @@ def map_points_(x, filter_position):
|
||||
|
||||
|
||||
def optimizing(f):
|
||||
"""Decorator for calling a function just once
|
||||
"""
|
||||
Decorator to call the function only once.
|
||||
|
||||
:param f: python function
|
||||
:type f: function
|
||||
:type f: Callable
|
||||
"""
|
||||
|
||||
def wrapper(*args, **kwargs):
|
||||
"""
|
||||
Wrapper function.
|
||||
|
||||
:param args: The arguments of the function.
|
||||
:param kwargs: The keyword arguments of the function.
|
||||
"""
|
||||
if kwargs["type_"] == "forward":
|
||||
if not wrapper.has_run_inverse:
|
||||
wrapper.has_run_inverse = True
|
||||
|
||||
Reference in New Issue
Block a user