tmp commit - toward 0.0.1

This commit is contained in:
Your Name
2021-11-29 15:29:00 +01:00
parent beae301a58
commit fb16fc7f3a
38 changed files with 2790 additions and 1 deletions

View File

@@ -0,0 +1,207 @@
import numpy as np
import torch
import argparse
from pina.pinn import PINN
from pina.ppinn import ParametricPINN as pPINN
from pina.label_tensor import LabelTensor
from torch.nn import ReLU, Tanh, Softplus
from pina.adaptive_functions.adaptive_softplus import AdaptiveSoftplus
from problems.parametric_elliptic_optimal_control_alpha_variable import ParametricEllipticOptimalControl
from pina.multi_deep_feed_forward import MultiDeepFeedForward
from pina.deep_feed_forward import DeepFeedForward
alpha = 1
class myFeature(torch.nn.Module):
"""
Feature: sin(x)
"""
def __init__(self):
super(myFeature, self).__init__()
def forward(self, x):
return (-x[:, 0]**2+1) * (-x[:, 1]**2+1)
class CustomMultiDFF(MultiDeepFeedForward):
def __init__(self, dff_dict):
super().__init__(dff_dict)
def forward(self, x):
out = self.uu(x)
p = LabelTensor((out['u_param'] * x[:, 3]).reshape(-1, 1), ['p'])
a = LabelTensor.hstack([out, p])
return a
model = CustomMultiDFF(
{
'uu': {
'input_variables': ['x1', 'x2', 'mu', 'alpha'],
'output_variables': ['u_param', 'y'],
'layers': [40, 40, 20],
'func': Softplus,
'extra_features': [myFeature()],
},
# 'u_param': {
# 'input_variables': ['u', 'mu'],
# 'output_variables': ['u_param'],
# 'layers': [],
# 'func': None
# },
# 'p': {
# 'input_variables': ['u'],
# 'output_variables': ['p'],
# 'layers': [10],
# 'func': None
# },
}
)
opc = ParametricEllipticOptimalControl(alpha)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run PINA")
group = parser.add_mutually_exclusive_group(required=True)
group.add_argument("-s", "-save", action="store_true")
group.add_argument("-l", "-load", action="store_true")
args = parser.parse_args()
# model = DeepFeedForward(
# layers=[40, 40, 20],
# output_variables=['u_param', 'y', 'p'],
# input_variables=opc.input_variables+['mu', 'alpha'],
# func=Softplus,
# extra_features=[myFeature()]
# )
pinn = pPINN(
opc,
model,
lr=0.002,
error_norm='mse',
regularizer=1e-8,
lr_accelerate=None)
if args.s:
pinn.span_pts(30, 'grid', ['D1'])
pinn.span_pts(50, 'grid', ['gamma1', 'gamma2', 'gamma3', 'gamma4'])
pinn.train(10000, 20)
# with open('ocp_wrong_history.txt', 'w') as file_:
# for i, losses in enumerate(pinn.history):
# file_.write('{} {}\n'.format(i, sum(losses).item()))
pinn.save_state('pina.ocp')
else:
pinn.load_state('working.pina.ocp')
pinn.load_state('pina.ocp')
import matplotlib
matplotlib.use('GTK3Agg')
import matplotlib.pyplot as plt
# res = 64
# param = torch.tensor([[3., 1]])
# pts_container = []
# for mn, mx in [[-1, 1], [-1, 1]]:
# pts_container.append(np.linspace(mn, mx, res))
# grids_container = np.meshgrid(*pts_container)
# unrolled_pts = torch.tensor([t.flatten() for t in grids_container]).T
# unrolled_pts = torch.cat([unrolled_pts, param.double().repeat(unrolled_pts.shape[0], 1).reshape(-1, 2)], axis=1)
# unrolled_pts = LabelTensor(unrolled_pts, ['x1', 'x2', 'mu', 'alpha'])
# Z_pred = pinn.model(unrolled_pts.tensor)
# print(Z_pred.tensor.shape)
# plt.subplot(2, 3, 1)
# plt.pcolor(Z_pred['y'].reshape(res, res).detach())
# plt.colorbar()
# plt.subplot(2, 3, 2)
# plt.pcolor(Z_pred['u_param'].reshape(res, res).detach())
# plt.colorbar()
# plt.subplot(2, 3, 3)
# plt.pcolor(Z_pred['p'].reshape(res, res).detach())
# plt.colorbar()
# with open('ocp_mu3_a1_plot.txt', 'w') as f_:
# f_.write('x y u p ys\n')
# for (x, y), tru, pre, e in zip(unrolled_pts[:, :2],
# Z_pred['u_param'].reshape(-1, 1),
# Z_pred['p'].reshape(-1, 1),
# Z_pred['y'].reshape(-1, 1),
# ):
# f_.write('{} {} {} {} {}\n'.format(x.item(), y.item(), tru.item(), pre.item(), e.item()))
# param = torch.tensor([[3.0, 0.01]])
# unrolled_pts = torch.tensor([t.flatten() for t in grids_container]).T
# unrolled_pts = torch.cat([unrolled_pts, param.double().repeat(unrolled_pts.shape[0], 1).reshape(-1, 2)], axis=1)
# unrolled_pts = LabelTensor(unrolled_pts, ['x1', 'x2', 'mu', 'alpha'])
# Z_pred = pinn.model(unrolled_pts.tensor)
# plt.subplot(2, 3, 4)
# plt.pcolor(Z_pred['y'].reshape(res, res).detach())
# plt.colorbar()
# plt.subplot(2, 3, 5)
# plt.pcolor(Z_pred['u_param'].reshape(res, res).detach())
# plt.colorbar()
# plt.subplot(2, 3, 6)
# plt.pcolor(Z_pred['p'].reshape(res, res).detach())
# plt.colorbar()
# plt.show()
# with open('ocp_mu3_a0.01_plot.txt', 'w') as f_:
# f_.write('x y u p ys\n')
# for (x, y), tru, pre, e in zip(unrolled_pts[:, :2],
# Z_pred['u_param'].reshape(-1, 1),
# Z_pred['p'].reshape(-1, 1),
# Z_pred['y'].reshape(-1, 1),
# ):
# f_.write('{} {} {} {} {}\n'.format(x.item(), y.item(), tru.item(), pre.item(), e.item()))
y = {}
u = {}
for alpha in [0.01, 0.1, 1]:
y[alpha] = []
u[alpha] = []
for p in np.linspace(0.5, 3, 32):
a = pinn.model(LabelTensor(torch.tensor([[0, 0, p, alpha]]).double(), ['x1', 'x2', 'mu', 'alpha']).tensor)
y[alpha].append(a['y'].detach().numpy()[0])
u[alpha].append(a['u_param'].detach().numpy()[0])
plt.plot(np.linspace(0.5, 3, 32), u[1], label='u')
plt.plot(np.linspace(0.5, 3, 32), u[0.01], label='u')
plt.plot(np.linspace(0.5, 3, 32), u[0.1], label='u')
plt.plot([1, 2, 3], [0.28, 0.56, 0.85], 'o', label='Truth values')
plt.legend()
plt.show()
print(y[1])
print(y[0.1])
print(y[0.01])
with open('elliptic_param_y.txt', 'w') as f_:
f_.write('mu 1 01 001\n')
for mu, y1, y01, y001 in zip(np.linspace(0.5, 3, 32), y[1], y[0.1], y[0.01]):
f_.write('{} {} {} {}\n'.format(mu, y1, y01, y001))
with open('elliptic_param_u.txt', 'w') as f_:
f_.write('mu 1 01 001\n')
for mu, y1, y01, y001 in zip(np.linspace(0.5, 3, 32), u[1], u[0.1], u[0.01]):
f_.write('{} {} {} {}\n'.format(mu, y1, y01, y001))
plt.plot(np.linspace(0.5, 3, 32), y, label='y')
plt.plot([1, 2, 3], [0.062, 0.12, 0.19], 'o', label='Truth values')
plt.legend()
plt.show()