tmp commit - toward 0.0.1
This commit is contained in:
42
pina/adaptive_functions/adaptive_square.py
Normal file
42
pina/adaptive_functions/adaptive_square.py
Normal file
@@ -0,0 +1,42 @@
|
||||
import torch
|
||||
from torch.nn.parameter import Parameter
|
||||
|
||||
class AdaptiveSquare(torch.nn.Module):
|
||||
'''
|
||||
Implementation of soft exponential activation.
|
||||
Shape:
|
||||
- Input: (N, *) where * means, any number of additional
|
||||
dimensions
|
||||
- Output: (N, *), same shape as the input
|
||||
Parameters:
|
||||
- alpha - trainable parameter
|
||||
References:
|
||||
- See related paper:
|
||||
https://arxiv.org/pdf/1602.01321.pdf
|
||||
Examples:
|
||||
>>> a1 = soft_exponential(256)
|
||||
>>> x = torch.randn(256)
|
||||
>>> x = a1(x)
|
||||
'''
|
||||
def __init__(self, alpha = None):
|
||||
'''
|
||||
Initialization.
|
||||
INPUT:
|
||||
- in_features: shape of the input
|
||||
- aplha: trainable parameter
|
||||
aplha is initialized with zero value by default
|
||||
'''
|
||||
super(AdaptiveSquare, self).__init__()
|
||||
|
||||
self.scale = Parameter(torch.tensor(1.0))
|
||||
self.scale.requiresGrad = True # set requiresGrad to true!
|
||||
|
||||
self.translate = Parameter(torch.tensor(0.0))
|
||||
self.translate.requiresGrad = True # set requiresGrad to true!
|
||||
|
||||
def forward(self, x):
|
||||
'''
|
||||
Forward pass of the function.
|
||||
Applies the function to the input elementwise.
|
||||
'''
|
||||
return self.scale * (x + self.translate)**2
|
||||
Reference in New Issue
Block a user